DOI QR코드

DOI QR Code

Effect of Trypsin on Physico-dynamic and Histological Changes after Decellularization of Bovine Pericardium

소 심낭의 무세포화에서 트립신이 이식편의 물리-역학적 및 조직학적 변화에 미치는 영향

  • Seong, Yang-Won (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital) ;
  • Kim, Yong-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital) ;
  • Kim, Sao-Hwan (Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Min, Byoung-Ju (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital) ;
  • Lee, Young-Ok (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital) ;
  • Lim, Hong-Gook (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital)
  • 성용원 (서울대학교병원 흉부외과) ;
  • 김용진 (서울대학교병원 흉부외과) ;
  • 김수환 (서울대학교 병원 임상의학 연구소, 바이오 이종장기 개발 사업단) ;
  • 민병주 (서울대학교병원 흉부외과) ;
  • 이영옥 (서울대학교병원 흉부외과) ;
  • 임홍국 (서울대학교병원 흉부외과)
  • Received : 2010.08.16
  • Accepted : 2010.11.22
  • Published : 2010.12.05

Abstract

Background: Various decellularization methods have been studied in order to develop tissue graft which is less immunogenic and more durable. This study was performed to investigate the physico-dynamic and histological effect of trypsin pretreatment on decellularization protocols. Material and Method: Two groups of bovine pericardium specimen each underwent decellularization process based on SDS and Triton X-100 or N-lauroylsarcosinate and Triton X-100. Two more groups additionally underwent pretreatment with 0.1% Trypsin/0.1% EDTA. After decellularization process, mechanical tensile strength was tested, then biomechanical test of permeability and compliance was tested before and after fatigue test. Light microscopy and electron microscopy was performed to observe histological findings. Result: There was no difference in mechanical tensile strength between groups, but permeability and compliance was decreased in trypsin pretreated groups. Light microscopic and electron microscopic findings revealed damage of the extracellular matrix in trypsin pretreated groups and in groups which underwent the fatigue test also. Conclusion: Trypsin pretreatment in decellularizing process of bovine pericardium damages extracellular matrix and increases permeability and compliance of the bovine pericardium, but did not decrease tensile strength. Further studies are needed to use enzymatic treatments in decellularization protocols.

배경: 이식편을 개발함에 있어서 숙주의 면역반응을 최소화하여 보다 더 오래 사용할 수 있게 하기위한 방법으로 무세포화에 대한 연구가 시행되고 있다. 저자들은 소 심낭의 무세포화의 과정에 효소제인 트립신 전처치가 물리역학적, 조직학적으로 미치는 영향에 대해 알아보고자 하였다. 대상 및 방법: 소 심낭편을 SDS와 Triton X-100 또는 N-lauroylsarcosinate와 Triton X-100으로 무세포화하는 것을 기본으로 한 군들과 0.1% 트립신/0.1% EDTA로 전처치를 추가한 군들에서 장력 검사를 실시하고, 생체 이식 후의 상태를 가정한 피로도 검사를 전후로 하여 투과도와 유순도는 검사하였고, 피로도 검사 전후로 조직학적인 변화를 광학현미경 및 전자현미경으로 관찰하였다. 결과: 트립신 처치를 추가한군과 아닌 군에서 기계적 장벽의 차이는 없었으나, 투과도와 유순도는 피로도검사 전과 후로 트립신 처치를 하지 않은 군에 비해 증가하였으며, 조직학적으로도 세포외 기질이 더 손상된 소견을 보였다. 걸론: 소 심낭의 무세포화에서 트립신 전처치는 세포외 기질의 손상을 유발하지만 기계적 장력에는 큰 영향을 미치지 않았으며, 피로도검사 전후 모두 투과도와 유순도를 증가시켰다. 무세포화과정에서 트립신과 같은 단백질 분해 효소제를 이용하기 위해서는 조직의 생체 물리적 손상을 최소화할 수 있는 다양한 방법을 조합한 연구가 더 필요하다.

Keywords

References

  1. Kim KC, Lee C, Choi CH, et al. Development of porcine pericardial heterograft for clinical application (tensile stren gth-thickness). Korean J Thorac Cardiovasc Surg 2008;41: 170-6.
  2. Song H, Kang SH, Ryu YG, et al. Comparison of patency and viability in fresh and cryopreserved arterial and venous allograft conduits in dogs. Korean J Thorac Cardiovasc Surg 2008;41:149-59.
  3. Park CS, Kim YJ, Sung SC, et al. Study on effective decellularization technique for xenograft cardiac valve, arterial wall and pericardium; optimization of decellularization. Korean J Thorac Cardiovasc Surg 2008;41:550-62.
  4. Sung SC, Kim YJ, Choi SY, et al. A study on an effective decellularization technique for a xenograft cardiac valve:The effect of osmotic treatment with hypotonic solution. Korean J Thorac Cardiovasc Surg 2008;41:679-86.
  5. Cho SK, Kim YJ, Kim SH, et al. Comparison of the uniaxial tensile strength, elasticity and thermal stability between glutaraldehyde and glutaraldehyde with solvent fixation in xenograft cardiovascular tissue. Korean J Thorac Cardiovasc Surg 2009;42:165-74.
  6. Chang HW, Kim YJ, Kim SH, et al. The dynamic and histologic changes of variously fixed bovine pericardiums specimens after mechanical fatigue stimuli. Korean J Thorac Cardiovasc Surg 2009;42:148-56.
  7. Hwang SW, Kim YJ, Kim SH, et al. Anti-calcification effects in decellularized and variously fixed bovine pericardium. Korean J Thorac Cardiovasc Surg 2010;43:235-45. https://doi.org/10.5090/kjtcs.2010.43.3.235
  8. Dellgren G, Eriksson M, Brodin LA, et al. The extended Biocor stentless aortic bioprosthesis. Early clinical experience. Scand Cardiovasc J 1999;33:259-64. https://doi.org/10.1080/14017439950141498
  9. Rieder E, Seebacher G, Kasimir MT, et al. Tissue engineering of heart valves. Circulation 2005;111:2792-7. https://doi.org/10.1161/CIRCULATIONAHA.104.473629
  10. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27:3675-83.
  11. Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry. 2nd ed. New York: Wiley. 2002.
  12. Schenke-Layland K, Vasilevski O, Opitz F, et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 2003;143:201-8. https://doi.org/10.1016/j.jsb.2003.08.002
  13. Wang KX, Zhang JF, Zhan QP, et al. Effect of trypsin and Triton-X 100 for decellularization of porcine aortic heart valves. Di Yi Jun Yi Da Xue Xue Bao 2005;25:22-5.
  14. Grauss RW, Hazekamp MG, Oppenhuizen F, et al. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 2005;27:566-71. https://doi.org/10.1016/j.ejcts.2004.12.052
  15. Grauss RW, Hazekamp MG, van Vliet S, et al. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2003;126:2003-10. https://doi.org/10.1016/S0022-5223(03)00956-5
  16. Rieder E, Kasimir MT, Silberhumer G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004;127:399-405. https://doi.org/10.1016/j.jtcvs.2003.06.017
  17. Chen RN, Ho HO, Tsai YT, et al. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004;25:2679-86. https://doi.org/10.1016/j.biomaterials.2003.09.070
  18. Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 2004;10:1346-58.
  19. Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 2005;26:7339-49. https://doi.org/10.1016/j.biomaterials.2005.05.066
  20. Lin P, Chan WC, Badylak SF, et al. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng 2004;10:1046-53.
  21. Ketchedjian A, Jones AL, Krueger P, et al. Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann Thorac Surg 2005;79:888-96. https://doi.org/10.1016/j.athoracsur.2004.09.033
  22. Hudson TW, Zawko S, Deister C, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 2004;10:1641-51. https://doi.org/10.1089/ten.2004.10.1641
  23. Vanken P, Joshi S, Murray MM, et al. Triton-X is most effective among three decellularization agents for ACL tissue engineering. J Orthop Res 2009;27:1612-8. https://doi.org/10.1002/jor.20932
  24. Bader A, Schilling T, Teebken OE, et al. Tissue engineering of heart valves – human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 1998; 14:279-84. https://doi.org/10.1016/S1010-7940(98)00171-7
  25. Kasimir MT, Rieder E, Seebacher G, et al. Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs 2003;26:412-7.
  26. Tudorache I, Cebotari S, Sturz G, et al. Tissue engineering of heart valves: Biomechanical and morphological properties of decellularized heart valves. J Heart Valve Dis 2007;16: 567-73; discussion 574