• 제목/요약/키워드: BIOMASS

Search Result 4,858, Processing Time 0.03 seconds

Comparison of chemical compositions and source apportionmentof PM1.0 and PM2.5 in Seoul and Gwangju in 2021 (2021년 서울과 광주 지역 PM1.0과 PM2.5의 화학적 특성 비교 분석 연구)

  • Ju Young Kim;Seung Mee Oh;Hye Jung Shin;Yu Woon Chang;Yong Hwan Lee;Su Jin Kwon;Sung Deuk Choi;Sang Jin Lee;Ji Yi Lee
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.129-144
    • /
    • 2023
  • The PM1.0 and PM2.5 samples were collected synchronously using a single channel particulate sampler equipped with PM1.0 and PM2.5 cyclones, respectively, and seasonal mass concentration and chemical composition of PM1.0 and PM2.5 were quantified in Seoul and Gwangju in 2021-2022. The mass concentrations of PM1.0 and PM2.5 were 17±11 and 22±14 ㎍/m3 in Seoul, and 16±9 and 19±12 ㎍/m3 in Gwangju, respectively. The average ratios of PM1.0/PM2.5 were 83±16% in Seoul and 83±7% in Gwangju. The chemical compositions of PM1.0 and PM2.5 were similar at both sites with OC component being the most dominant, and NO3- increasing from summer to winter, while, the difference of chemical distribution at the two sites was most distinct in the autumn. Gwangju showed a higher proportion of OC and a lower proportion of NO3- compared to Seoul during the autumn. Both sites appear to reflect their urban characteristics, with Gwangju also reflecting the impact of biomass combustion as a part of rural activities.

Spatial Distribution Pattern of Cladoceran Community in Accordance with Microhabitat Types (미소서식처 유형별 지각류 (Cladocerans)의 분포 특성)

  • Jong-Yun Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.3
    • /
    • pp.324-337
    • /
    • 2024
  • Aquatic macrophytes are important factors in determining species diversity and abundance of cladocerans, but the effects of cladocerans on plant species composition or structure have not been fully considered. In South Korea, wetlands and reservoirs that are prone to covering aquatic macrophytes are scattered across the country, so it is necessary to consider on aquatic macrophytes study, when aquatic animals including cladoceran were studied. in this study, the species and abundance of cladocerans community in six microhabitat types are investigated, and based on these results, habitat conservation and efficient management are suggested. The high species numbers and abundance of cladocerans communities were found in mixed plant communities consisting of free-floating, floating-leaved, and submerged plants. The inclusion of submerged plants in plant communities contributes significantly to the complexity of habitat structures, and may increase species and abundance of cladocenran communities. This can be compared to a plant community consisting only of free-floating and floating-leaved plants in the absence of submerged plants, thereby identifying the efficiency of submerged plants. In the mixed plant communities, species diversity was the highest due to the emergence of cladoceran species (Graptoleveris testudinaria, Ilyocryptus spinifer, and Leydigia acanthococcides) absent from other plant communities. The gradual increase in the biomass (g) of submerged plants in the mixed plant communities significantly increased the species numbers and abundance of cladoceran communities (p<0.05). This is strong evidence that the increase of submerged plants in mixed plant communities has a positive effect on efficiency as a habitat for cladocerans. Although submeged plants do not contribute significantly to their landscape/aesthetic value because they are submerged in water, they have the effect of increasing species diversity in terms of biology, so they should be considered important when creating/restoring wetlands.

Quantifying forest resource change on the Korean Peninsula using satellite imagery and forest growth models (위성영상과 산림생장모형을 활용한 한반도 산림자원 변화 정량화)

  • Moonil Kim;Taejin Park
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2024
  • This study aimed to quantify changes in forest cover and carbon storage of Korean Peninsular during the last two decades by integrating field measurement, satellite remote sensing, and modeling approaches. Our analysis based on 30-m Landsat data revealed that the forested area in Korean Peninsular had diminished significantly by 478,334 ha during the period of 2000-2019, with South Korea and North Korea contributing 51.3% (245,725 ha) and 48.6% (232,610 ha) of the total change, respectively. This comparable pattern of forest loss in both South Korea and North Korea was likely due to reduced forest deforestation and degradation in North Korea and active forest management activity in South Korea. Time series of above ground biomass (AGB) in the Korean Peninsula showed that South and North Korean forests increased their total AGB by 146.4Tg C (AGB at 2020=357.9Tg C) and 140.3Tg C (AGB at 2020=417.4Tg C), respectively, during the last two decades. This could be translated into net AGB increases in South and North Korean forests from 34.8 and 29.4 Mg C ha-1 C to 58.9(+24.1) and 44.2(+14.8) Mg C ha-1, respectively. It indicates that South Korean forests are more productive during the study period. Thus, they have sequestered more carbon. Our approaches and results can provide useful information for quantifying national scale forest cover and carbon dynamics. Our results can be utilized for supporting forest restoration planning in North Korea

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Study on Crude Oil Productions and its practice with Rice hull As Treated in Various Supercritical Solvents on Application of Liquefaction Technology (Liquefaction technology 적용 시 왕겨를 이용한 Crude oil 생산 및 적용 연구)

  • Shin, JoungDu;Baek, Yi;Hong, Seung-Gil;Kwon, Soon-Ik;Park, Woo-Kyun;Park, SangWon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.110-118
    • /
    • 2010
  • Supercritical treatment of liquefaction technology for rice hull was investigated the biomass conversion rate and evaluated its crude oil in respect to feasibility of burner in order to heat the green house. The reaction was carried out in a 5,000 mL liquefaction system with dispenser and external electrical furnace. Raw materials (160 g) of rice hull and 3,000 mL of different solvents were fed into the reactor. It was observed that the maximum crude oil yield was about 84.4 % with 1-butanol. The calorific value of crude oil from ethanol solvent were 7,752 kcal/kg. Furthermore, in case study of co-solvent with ethanol and bulk-glycerol, it observed that more than 80 % of rice hull was decomposed and liquefied in its solvent at $315{\sim}326^{\circ}C$ for 30 min. For the development of applicable bio-fuel from rice hull, it was considered that its feasibility is necessary to be carried out for co-solvent soluble portions. Regarding to utilize the crude oil into burner as fuel, it was observed that its calorific value was lower at approximately 24 % than the diesel. Also, flame length from crude oil at lower temperature was decreasing due to incomplete incineration. The temperature of warm wind on the burner was maintained between 63 and $65^{\circ}C$, and the temperature of emission line was appeared at $350{\sim}380^{\circ}C$.

Catalytic Wet Gasification of Biomass Mixed Fuels (바이오메스 혼합연료의 습윤 촉매 가스화 연구)

  • Kang, Sung-Kyu;Lee, Seung-Jae;Ryu, In-Soo;Hur, Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.59-72
    • /
    • 2009
  • In order to utilize sewage sludge as a heat source of energy, it goes without saying that the fuel should be clean and pose no threat to the environment. As a consequent, it should not contain even minute quantities of heavy metals / impurities. The SOCA (Sludge-Oil-Coal- Agglomerates) fuel can meet all these requirements. SOCA being a solid fuel can be gasified for the production of clean energy. Wet catalytic gasification is the most appropriate process for SOCA containing nearly 60% water. It is important to note that the SOCA thus obtained inherits ca. 40~50% of sulfur from the coal used. It can poison the catalyst during catalytic gasification process. Consequently, it becomes important to choose a proper catalyst for the gasification. Calcium was found to be ideal choice as a catalyst for the gasification of SOCA. The optimal gasification was performed at $850^{\circ}C$ with water vapor. The role of fuel-N is of utmost importance in the gasification of SOCA. The gasification should be controlled to reduce the production of HCN to a minimum and enhance its conversion to $N_2$ and/or $NH_3$.

Effect of Temperatures to Crude Oil Productions with Rapeseed Straw on Application of Hydro-thermal Liquefaction Technology (Hydro-thermal Liquefaction Technology적용 시 유채대를 이용한 Crude oil생산에 미치는 반응온도의 영향)

  • Shin, JoungDu;Hong, Seung-Gil;Kwon, Soon-Ik;Park, Woo-Kyun;Park, SangWon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.104-109
    • /
    • 2010
  • Hydro-thermal liquefaction technology for rapeseed straws was investigated the biomass conversion rate with different catalysts and reaction temperatures. NaOH and KOH were used for catalysts, and the reaction temperature were ranged from 180 to $320^{\circ}C$ at every $20^{\circ}C$ of intervals for 10 minutes. The reaction was carried out in a 5,000 mL liquefaction system with dispenser and external electrical furnace. Raw materials (160g), 2,000 mL of distilled water and 10% (wt/wt) of catalyst to plant residue were fed into the reactor. It was observed that the maximum crude oil yield was about 36% at temperature range, $260{\sim}280^{\circ}C$ with KOH and at $300^{\circ}C$ with NaOH, respectively. It was observed that the more calorific values of crude oil, the higher reaction temperature with KOH, but it had the reverse pattern in NaOH.

Selection of Plant Species for Phytoremediation of Arsenic Contaminated Sandy Soil in a Pine Forest at Janghang, Korea (장항 송림 비소오염토양의 식물재배정화를 위한 식물종 선정)

  • Bumhan Bae;Younghun Kim
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 2024
  • A series of experiments were performed to select suitable plant species for phytoremediation of arsenic (As) contaminated sandy pine forest soil in Janghang. Native plant species could uptake and remove As and sustain growth under the allelopathy of the pine forest and half-shade environmental conditions. We transplanted a total of 11 species into the pine forest in a pot, cultured them in a greenhouse for 3 months, and then harvested these plants to measure As accumulation, fresh weight, bioconcentration factor (BCF), and the amount of As removal per plant. The BCF of Lampranthus spectabilis was 3.52 and the amount of As taken up in Pennisetum alopecuroides shoots was 111.95 mg/kg. Higher biomass plants Lampranthus spectabilis and Lonicera japonica took up 8.49 mg/kg and 2.87 mg/kg of As in the above-ground parts, respectively. We applied oxalaic acid of 10, 20, and 40 mmol/kg-soil in total (divided into 15-20 splits) to each pot over a period of one month to enhance As uptake. Results showed no significant changes in plant growth or soil dehydrogenase activity. However, a statistically significant increase (p<0.05) in As uptake in Pennisetum alopecuroides was observed when a higher amount of oxalic acid (40 mmol/kg-soil) was applied.

The Limnological Survey of a Coastal Lagoon in Korea (3): Lake Hwajinpo (동해안 석호의 육수학적 조사 (3): 화진포호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.12-25
    • /
    • 2004
  • Physicochemical parameters, plankton biomass, and sediment were surveyed from 1998 to 2000 at two months interval in a eutrophic coastal lagoon(Lake Hwajinpo, Korea). The lake is separated from the sea by a narrow sand dune. Littoral zone is well vegetated with leafing-leaved aquatic plants. The lake basin is divided into two subbasins by a shallow sill. It has intrusion of seawater by permeation and stormy waves. Stable chemoclines are formed by salinity difference at 1m depth all the year round. DO was often very low (< 1 mg$O_2\;L^{-1}$) at hypolimnion. Temperature inversions were observed in November. Nitrate and ammonium concentrations were very low(< (1.1 mgN $L^{-1}$), even though TN was usually 2.0 ${\sim}$ 3.5 mgN $L^{-1}$. TN/TP was generally lower than the Redfield ratio. Transparency was 0.2 ${\sim}$ 1.7 m, and COD, TP, and TN of sediment were 3.1 ${\sim}$ 40.3 mg$O_2\;g^{-1}$, 0.91 ${\sim}$ 1.39 mgP $g^{-1}$, and 0.34 ${\sim}$ 3.07 mgN $g^{-1}$, respectively. Phytoplankton chlorophyll- a concentrations were mostly over 40 mg $m^{-3}$. Two basins showed different phytoplankton communities with Oscillatoria so., Trachelomonas sp., Schizochlamys gelatinosa, and Anabaena spiroides dominant in South basin, and with Trachelomons sp., Schroederia so., schizochlamys gelatinosa, and Trachelomonas sp. dominant in the North basin. The seasonal succession of phytoplankton was very fast, possibly due to sudden changes in physical conditions, such as wind, turbidity, salinity and light.

Study for Clean Energy Farming System by Mass and Energy Balance Analysis in the Controlled Cultivation of Vegetable Crop (Cucumber) (물질 및 에너지 수지 분석을 통한 시설채소(오이)의 청정에너지 농업 시스템 구축을 위한 기초 연구)

  • Shin, Kook-Sik;Kim, Seung-Hwan;Oh, Seong-Yong;Lee, Sang-En;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.280-286
    • /
    • 2012
  • Clean energy farming is the agricultural activity to improve an efficiency of agricultural energy use and to replace fossil fuels. This study was carried out to establish the clean energy farming system in the controlled cultivation of vegetable crop (cucumber) adopting the biogas production facility. In order to design the clean energy farming system, mass and energy balance was analyzed between the controlled cultivation system and the biogas production facility. Net yearly heating energy demands ($E_{YHED}$) of forcing and semi-forcing cultivation types were 48,697 and $13.536Mcal\;10^{-1}$ in the controlled cultivation of vegetable cucumber. To cover these $E_{YHED}$, the pig slurry of 511 and $142m^3\;10a^{-1}$ (biogas volume of 9,482 and $2,636Nm^3\;10a^{-1}$, respectively, as 60% methane content) were needed in forcing and semi-forcing cultivation types. The pig slurry of $511m^3\;10a^{-1}$ caused N 1,788, $P_2O_5$ $511kg\;10a^{-1}$ in the forcing cultivation type, and the pig slurry of $142m^3\;10a^{-1}$ caused N 497, $P_2O_5$ $142kg\;10a^{-1}$ in the semi-forcing cultivation type. The daily heating energy demand ($E_{i,DHED}$) by the time scale analysis showed the minimum $E_{i,DHED}$ of $7.7Mcal\;10a^{-1}\;day^{-1}$, the maximum $E_{i,DHED}$ of $515.1Mcal\;10a^{-1}\;day^{-1}$, and the mean $E_{i,DHED}$ of 310.2 in the forcing cultivation type. And the minimum $E_{i,DHED}$, the maximum $E_{i,DHED}$, and the mean $E_{i,DHED}$ were 5.3, 258.0, and $165.1Mcal\;10a^{-1}\;day^{-1}$ in the semi-forcing cultivation type, respectively. Input scale of biogas production facility designed from the mean $E_{i,DHED}$ were 3.3 and $1.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type. The maximum $E_{i,DHED}$ gave the input scale of 5.4 and $2.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type.