DOI QR코드

DOI QR Code

Comparison of chemical compositions and source apportionmentof PM1.0 and PM2.5 in Seoul and Gwangju in 2021

2021년 서울과 광주 지역 PM1.0과 PM2.5의 화학적 특성 비교 분석 연구

  • Ju Young Kim (Department of Environmental Science & Engineerig, EWHA Womans University) ;
  • Seung Mee Oh (Department of Environmental Science & Engineerig, EWHA Womans University) ;
  • Hye Jung Shin (Department of Air Quality Research, National Institute of Environmental Research) ;
  • Yu Woon Chang (Department of Air Quality Research, National Institute of Environmental Research) ;
  • Yong Hwan Lee (Department of Air Quality Research, National Institute of Environmental Research) ;
  • Su Jin Kwon (Department of Environmental Health Sciences, Seoul National University) ;
  • Sung Deuk Choi (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Sang Jin Lee (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Ji Yi Lee (Department of Environmental Science & Engineerig, EWHA Womans University)
  • 김주영 (이화여자대학교 환경공학과) ;
  • 오승미 (이화여자대학교 환경공학과) ;
  • 신혜정 (국립환경과학원 대기환경연구과) ;
  • 장유운 (국립환경과학원 대기환경연구과) ;
  • 이용환 (국립환경과학원 대기환경연구과) ;
  • 권수진 (서울대학교 보건대학원 환경보건학과) ;
  • 최성득 (울산과학기술원 도시환경공학) ;
  • 이상진 (울산과학기술원 도시환경공학) ;
  • 이지이 (이화여자대학교 환경공학과)
  • Received : 2023.08.01
  • Accepted : 2023.09.18
  • Published : 2023.12.31

Abstract

The PM1.0 and PM2.5 samples were collected synchronously using a single channel particulate sampler equipped with PM1.0 and PM2.5 cyclones, respectively, and seasonal mass concentration and chemical composition of PM1.0 and PM2.5 were quantified in Seoul and Gwangju in 2021-2022. The mass concentrations of PM1.0 and PM2.5 were 17±11 and 22±14 ㎍/m3 in Seoul, and 16±9 and 19±12 ㎍/m3 in Gwangju, respectively. The average ratios of PM1.0/PM2.5 were 83±16% in Seoul and 83±7% in Gwangju. The chemical compositions of PM1.0 and PM2.5 were similar at both sites with OC component being the most dominant, and NO3- increasing from summer to winter, while, the difference of chemical distribution at the two sites was most distinct in the autumn. Gwangju showed a higher proportion of OC and a lower proportion of NO3- compared to Seoul during the autumn. Both sites appear to reflect their urban characteristics, with Gwangju also reflecting the impact of biomass combustion as a part of rural activities.

Keywords

Acknowledgement

이 연구는 국립환경과학원의 수도권지역 PM1 특성 및 관리방안III(NIER-SP2021-336) 과제의 지원을 받아 수행되었으며, 이에 감사드립니다.

References

  1. Andreae, M. O. (1983). Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols. Science,220 (4602), 1148-1151. https://doi.org/10.1126/science.220.4602.1148
  2. Cheng, Y., Engling, G., He, K.-b., Duan, F.-k., Du, Z.-y., Ma, Y.-l., Liang, L.-l., Lu, Z.-f., Liu, J.-m., & Zheng, M. (2014). The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks. Environmental Pollution,185, 149-157. https://doi.org/10.1016/j.envpol.2013.10.037
  3. Cooke, W. F., & Wilson, J. J. (1996). A global black carbon aerosol model. Journal of Geophysical Research: Atmospheres,101 (D14), 19395-19409. https://doi.org/10.1029/96JD00671
  4. Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M. J., & Zhang, R. (2014). Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences,111(49), 17373-17378. https://doi.org/doi:10.1073/pnas.1419604111
  5. Ham, J., Lee, H. J., Cha, J. W., & Ryoo, S.-B. (2017). Potential source of PM 10, PM 2.5, and OC and EC in Seoul during spring 2016. Atmosphere,27(1), 41-54. https://doi.org/10.14191/Atmos.2017.27.1.041
  6. He, Z., Kim, Y. J., Ogunjobi, K. O., Kim, J. E., & Ryu, S. Y. (2004). Carbonaceous aerosol characteristics of PM2.5 particles in Northeastern Asia in summer 2002. Atmospheric Environment,38(12), 1795-1800. https://doi.org/https://doi.org/10.1016/j.atmosenv.2003.12.023
  7. Ji, D., Li, L., Wang, Y., Zhang, J., Cheng, M., Sun, Y., Liu, Z., Wang, L., Tang, G., Hu, B., Chao, N., Wen, T., & Miao, H. (2014). The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: Insights gained from observation. Atmospheric Environment,92, 546-556. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.04.048
  8. Kang, B.-W., Kang, C.-M., Lee, H.-S., & SunWoo, Y. (2008). Identification of potential source locations of PM 2.5 in Seoul using hybrid-receptor models. Journal of Korean Society for Atmospheric Environment, 24(6), 662-673. https://doi.org/10.5572/KOSAE.2008.24.6.662
  9. Kim, Y.-J., Jung, S.-W., Kang, C.-M., Ma, Y.-I., Kim, S.-H., Woo, J.-H., & SunWoo, Y. (2008). Characteristics of Nitrate (NO 3-) Volatilization from Fine Particles (PM 2.5) at 4 Measurement Sites in Seoul. Journal of Korean Society for Atmospheric Environment, 24(5), 613-621. https://doi.org/10.5572/KOSAE.2008.24.5.613
  10. Kouyoumdjian, H., & Saliba, N. A. (2006). Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride. Atmos. Chem. Phys.,6(7), 1865-1877. https://doi.org/10.5194/acp-6-1865-2006
  11. Lee, Y.-K., Lee, K.-J., Lee, J.-S., & Shin, E.-S. (2012). Regional Characteristics of Particle Size Distribution of PM 10. Journal of Korean Society for Atmospheric Environment, 28(6), 666-674. https://doi.org/10.5572/KOSAE.2012.28.6.666
  12. Li, Y., Zhao, H., & Wu, Y. (2015). Characteristics of Particulate Matter during Haze and Fog (Pollution) Episodes over Northeast China, Autumn 2013. Aerosol and Air Quality Research,15(3), 853-864. https://doi.org/10.4209/aaqr.2014.08.0158
  13. Liang, C.-S., Duan, F.-K., He, K.-B., & Ma, Y.-L. (2016). Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environment International,86, 150-170. https://doi.org/https://doi.org/10.1016/j.envint.2015.10.016
  14. Lim, S.-H., Lee, M.-H., & Kang, K.-S. (2010). Seasonal Variations of OC and EC in PM 10, PM 2.5 and PM 1.0 at Gosan Superstation on Jeju Island. Journal of Korean Society for Atmospheric Environment,26(5), 567-580.
  15. Lucey, D., Hadjiiski, L., Hopke, P. K., Scudlark, J. R., & Church, T. (2001). Identification of sources of pollutants in precipitation measured at the mid-Atlantic US coast using potential source contribution function (PSCF). Atmospheric Environment, 35(23), 3979-3986. https://doi.org/https://doi.org/10.1016/S1352-2310(01)00185-6
  16. Lundgren, D. A., Hlaing, D. N., Rich, T. A., & Marple, V. A. (1996). PM10/PM2.5/PM1 Data from a Trichotomous Sampler. Aerosol Science and Technology,25(3), 353-357. https://doi.org/10.1080/02786829608965401
  17. Moon, K.-J., Park, S.-M., Park, J.-S., Song, I.-H., Jang, S.-K., Kim, J.-C., & Lee, S.-J. (2011). Chemical Characteristics and Source Apportionment of PM 2.5 in Seoul Metropolitan Area in 2010. Journal of Korean Society for Atmospheric Environment,27(6), 711-722.
  18. Park, S.-S., Jung, S.-A., Gong, B.-J., Cho, S.-Y., & Lee, S.-J. (2013a). Characteristics of PM2. 5 haze episodes revealed by highly time-resolved measurements at an air pollution monitoring Supersite in Korea. Aerosol and Air Quality Research,13(3), 957-976. https://doi.org/10.4209/aaqr.2012.07.0184
  19. Park, S.-S., Sim, S. Y., Bae, M.-S., & Schauer, J. J. (2013b). Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmospheric Environment,73, 62-72. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.03.025
  20. Park, S. S., & Kim, Y. J. (2004). PM2.5 particles and size-segregated ionic species measured during fall season in three urban sites in Korea. Atmospheric Environment,38(10), 1459-1471. https://doi.org/https://doi.org/10.1016/j.atmosenv.2003.12.004
  21. Park, S. S., Kim, Y. J., & Fung, K. (2002). PM2.5 carbon measurements in two urban areas: Seoul and Kwangju, Korea. Atmospheric Environment,36(8), 1287-1297. https://doi.org/https://doi.org/10.1016/S1352-2310(01)00552-0
  22. Perez, N., Pey, J., Querol, X., Alastuey, A., Lopez, J. M., & Viana, M. (2008). Partitioning of major and trace components in PM10- PM2.5-PM1 at an urban site in Southern Europe. Atmospheric Environment,42(8), 1677-1691. https://doi.org/https://doi.org/10.1016/j.atmosenv.2007.11.034
  23. Rattanavaraha, W., Canagaratna, M. R., Budisulistiorini, S. H., Croteau, P. L., Baumann, K., Canonaco, F., Prevot, A. S. H., Edgerton, E. S., Zhang, Z., Jayne, J. T., Worsnop, D. R., Gold, A., Shaw, S. L., & Surratt, J. D. (2017). Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014-2015 using the aerosol chemical speciation monitor (ACSM). Atmospheric Environment, 167, 389-402. https://doi.org/https://doi.org/10.1016/j.atmosenv.2017.07.055
  24. Russell, A. G., McRae, G. J., & Cass, G. R. (1983). Mathematical modeling of the formation and transport of ammonium nitrate aerosol. Atmospheric Environment (1967), 17(5), 949-964. https://doi.org/https://doi.org/10.1016/0004-6981(83)90247-0
  25. Saylor, R. D., Edgerton, E. S., & Hartsell, B. E. (2006). Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation. Atmospheric Environment,40(39), 7546-7556. https://doi.org/https://doi.org/10.1016/j.atmosenv.2006.07.018
  26. Strak, M., Janssen, N. A., Godri, K. J., Gosens, I., Mudway, I. S., Cassee, F. R., Lebret, E., Kelly, F. J., Harrison, R. M., & Brunekreef, B. (2012). Respiratory health effects of airborne particulate matter: the role of particle size, composition, and oxidative potential-the RAPTES project. Environmental health perspectives,120(8), 1183-1189. https://doi.org/10.1289/ehp.1104389
  27. Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., & Yiyun, B. (2001). Black carbon emissions in China. Atmospheric Environment,35(25), 4281-4296. https://doi.org/https://doi.org/10.1016/S1352-2310(01)00179-0
  28. Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment,44(32), 3976-3984. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.06.060
  29. Wang, G., Xu, Y., Huang, L., Wang, K., Shen, H., & Li, Z. (2021). Pollution characteristics and toxic effects of PM1.0 and PM2.5 in Harbin, China. Environmental Science and Pollution Research,28(11), 13229-13242. https://doi.org/10.1007/s11356-020-11510-8
  30. Yang, Y., Liu, X., Qu, Y., Wang, J., An, J., Zhang, Y., & Zhang, F. (2015). Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmospheric Research,155, 192-203. https://doi.org/https://doi.org/10.1016/j.atmosres.2014.11.023
  31. Yeo, M. J., & Kim, Y. P. (2019). Trends of the PM10 concentrations and high PM10 concentration cases in Korea. Journal of Korean Society for Atmospheric Environment,35(2), 249-264. https://doi.org/10.5572/KOSAE.2019.35.2.249
  32. Yu, G.-H., Park, S.-S., Jung, S. A., Jo, M. R., Lim, Y. J., Shin, H. J., Lee, S. B., & Ghim, Y. S. (2018). Investigation on characteristics of high PM 2.5 pollution occurred during October 2015 in Gwangju. Journal of Korean Society for Atmospheric Environment,34(4), 567-587. https://doi.org/10.5572/KOSAE.2018.34.4.567
  33. Yu, G.-H., Zhang, Y., Cho, S.-Y., & Park, S. (2017). Influence of haze pollution on water-soluble chemical species in PM2.5 and size-resolved particles at an urban site during fall. Journal of Environmental Sciences,57, 370-382. https://doi.org/https://doi.org/10.1016/j.jes.2016.10.018
  34. Zeng, Y., & Hopke, P. K. (1989). A study of the sources of acid precipitation in Ontario, Canada. Atmospheric Environment (1967),23(7), 1499-1509. https://doi.org/https://doi.org/10.1016/0004-6981(89)90409-5
  35. Zhang, J., Yang, L., Mellouki, A., Wen, L., Yang, Y., Gao, Y., Jiang, P., Li, Y., & Wang, W. (2016). Chemical characteristics and influence of continental outflow on PM1.0, PM2.5 and PM10 measured at Tuoji island in the Bohai Sea. Science of The Total Environment,573, 699-706. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.08.146
  36. Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., & Wang, Y. (2015). Formation of urban fine particulate matter. Chemical reviews,115(10), 3803-3855. https://doi.org/10.1021/acs.chemrev.5b00067
  37. Zhang, Y., Lang, J., Cheng, S., Li, S., Zhou, Y., Chen, D., Zhang, H., & Wang, H. (2018). Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Science of The Total Environment,630, 72-82. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.02.151