• Title/Summary/Keyword: BH3

Search Result 362, Processing Time 0.029 seconds

Cloning and Functional Studies of Pro-Apoptotic MCL-1ES BH3M (세포사멸을 유도하는 새로운 단백질인 MCL-1ES BH3M의 클로닝 및 기능연구)

  • Kim, Jae-Hong;Park, Mira;Ha, Hye-Jeong;Lee, Kangseok;Bae, Jeehyeon
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.297-303
    • /
    • 2008
  • BCL-2 family members are essential protein for the regulation of cell death and survival consisting both antiapoptotic and pro-apoptotic proteins. In the present study, we designed and cloned a new apoptotic molecule MCL-1ES BH3M coding a modified protein of MCL-1L. Compared to MCL-1L protein, MCL-1ES BH3M lacks the PEST motifs known to be involved in MCL-1L protein degradation and has seven mutated residues in BH3 domain critical for dimerization with BCL-2 family members. Overexpression of MCL-1ES BH3M induced death of different cells, and its cell killing effect was not blocked by forced expression of the pro-survival protein MCL-1L. Expression of MCL-1ES BH3M protein led to the activation of caspase 9 and caspase 3, suggesting apoptotic cell death, and confocal fluorescent microscopic analyses showed that MCL-1ES BH3M was partially localized in mitochondria. In conclusion, we reported a new apoptotic molecule and determined its cell death activity in cells.

  • PDF

Promotion of Nonspecific Cytotoxic T Lymphocyte Activity by Bo-yang-hwan-oh-tang (보양환오탕에 의한 비특이적 세포독성 T 세포 활성 증강)

  • Ha, Jong-Cheon;Kim, Young-Hyun;Woo, Won-Hong;Nam, Sang-Yun
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.3 s.126
    • /
    • pp.226-232
    • /
    • 2001
  • To explore the possible cancer therapeutic application of "Bo-yang-hwan-oh-tang" (BH), a herbal medicinal recipe used for improvement of blood stasis, we have examined its direct cytotoxicity against tumor cell, and induction of cytotoxic activity of lymphocytes. Water extract of BH alone did not exhibit direct cytotoxicity to Yac-1 target cells even with high concentrations (10 mg/ml). By exposure for 3 days, BH did not induce any nonspecific cytotoxic activity of mouse spleen cells, either, when assessed in a 4 hr $^{51}Cr-release$ assay. However, when BH was added during CD3 stimulation of non-adherent spleen cells, non-specific CTL activity was markedly promoted in a dose dependent manner. In contrast, BH did not alter activated NK cell activity following IL-2 stimulation. These data suggest that BH does not induce but upregulates non-specific CTL effecter function and that activated NK cell does not respond to BH. For elucidation of the mechanism underlying this function of BH, time kinetic study for IL-2 production using ELISA was undertaken. IL-2 production following CD3 stimulation was significantly augmented and higher level of IL-2 is sustained over 3 days in the culture medium by BH treatment. Moreover, addition of exogenous IL-2 during CD3 stimulation resulted in a similar level of cytotoxicity between control and BH-treated culture. These data indicate that the BH-mediated upregulation of non-specific CTL activity is contributed by augmentation of IL-2 production. Our data imply the possible application of BH for combination therapy of cancer with non-specific activator.

  • PDF

Black Hole Binaries Dynamically Formed in Globular Clusters

  • Park, Dawoo;Kim, Chunglee;Lee, Hyung Mok;Bae, Yeong-Bok;Belczynski, Krzysztof
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2017
  • We investigate properties of black hole (BH) binaries formed in globular clusters, by using direct N-body simulations. Comparing with previous studies which usually considered single BH masses, our models consist of two-component BH masses, or continuous BH mass function with single mass ordinary cluster stars. During the early stage of dynamical evolution, initially distributed BHs are move to the cluster center by dynamical friction, then BH-BH binaries start to be formed, and eventually be ejected from the cluster due to three body interaction. Finally we find the formation efficiency of high mass BHs are alwats larger than that of lower mass BHs, implying that a BH mass spectrum expected from GW observation should be biased to high mass. In addition, mass ratios of BHs in binaries prefer similar masses (ratio~1), while the most extreme case is less than 3. Expected merger rate from our models is about 7 BH-BH mergers per $Mpc^3$ per yr.

  • PDF

Study on the Stability of NaBH4 Solution during Storage Process (NaBH4수용액 저장과정 중 안정성에 관한 연구)

  • Sim, Woojong;Jo, Jaeyoung;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.322-326
    • /
    • 2010
  • Stability of sodium borohydride solution during storage was studied. In order to enhance the $NaBH_4$ stability, NaOH and KOH were added to the $NaBH_4$ solution. The effect of concentration of the borohydride and alkaline solution, temperature and materials of storage vessels on the rate of borohydride hydrolysis was investigated. The rate of hydrogen evolution decreased as the concentration of alkaline increased due to increase of $NaBH_4$ stability in the solution. The stability of $NaBH_4$ solution decreased when the borohydride concentration raised from 10 to 15 wt% and then increased when the $NaBH_4$ concentration increased above 15 wt% due to increase in the pH of the concentrated solution. The activity coefficient of hydrolysis of $NaBH_4$ solution(NaOH 3.0 wt%, $NaBH_4$ 25 wt%) was 115.1 kJ/mol and this value was 1.5~4.0 times higher than that of hydrolysis of $NaBH_4$ solution with catalyst. The borohydride solutions in glass and stainless-steel vessel were more stable than the solution in plastic(PE) vessel.

3D Structure of Bacillus halodurans O-Methyltransferase, a Novel Bacterial O-Methyltransferase by Comparative Homology Modeling

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.941-946
    • /
    • 2007
  • Bacillus halodurans O-methyltransferase (BhOMT) is a S-adenosylmethionine (SAM or AdoMet) dependent methyltransferase. Three dimensional structure of the BhOMT bound to S-adenosyl-L-homocysteine (SAH or AdoHcy) has been determined by comparative homology modeling. BhOMT has 40% sequence identity with caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) from alfalfa. Based on x-ray structure of CCoAOMT, three dimensional structure of BhOMT was determined using MODELLER. The substrate binding sites of these two proteins showed slight differences, but these differences were important to characterize the substrate of BhOMT. Automated docking study showed that four flavonoids, quercetin, fisetin, myricetin, and luteolin which have two hydroxyl groups simultaneously at 3'- and 4'-position in the B-ring and structural rigidity of Cring resulting from the double bond characters between C2 and C3, were well docked as ligands of BhOMT. These flavonoids form stable hydrogen bondings with K211, R170, and hydroxyl group at 3'-position in the Bring has stable electrostatic interaction with Ca2+ ion in BhOMT. This study will be helpful to understand the biochemical function of BhOMT as an O-methyltransferase for flavonoids.

Hydrogen Desorption and Absorption Properties of MgH2, LiBH4, and MgH2 + LiBH4 Composite

  • Park, Hye Ryoung;Song, Myoung Youp
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.955-959
    • /
    • 2012
  • To increase the hydrogen storage capacity of Mg-based materials, a sample with a composition of 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ was prepared by planetary ball milling under hydrogen. The absorption and desorption properties of unmilled $MgH_2$, unmilled $LiBH_4$, and 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ were examined. At 648 K the unmilled $MgH_2$ desorbed 5.70 wt% for 60 min. The unmilled $LiBH_4$ desorbed 6.40 wt% H for 780 min at 673 K. The 69.7 wt% $MgH_2$ + 30.3 wt% $LiBH_4$ sample desorbed 3.10 wt% H for 50 min, and 3.32 wt% H for 300 min at 623 K at the second cycle.

Hydrolysis Reaction of NaBH4 using Unsupported Co-B, Co-P-B Catalyst (비담지 Co-B, Co-P-B 촉매를 이용한 NaBH4 가수분해 반응)

  • Oh, Sung-June;Jung, Hyeon-Seong;Jeong, Jae-Jin;Na, Il-Chai;Ahn, Ho-Geun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.11-15
    • /
    • 2015
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells(PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-B, Co-P-B catalyst were studied. BET surface area of catalyst, yield of hydrogen, effect of $NaBH_4$ concentration and durability of catalyst were measured. The BET surface area of unsupported Co-B catalyst was $75.7m^2/g$ and this value was 18 times higher than that of FeCrAlloy supported Co-B catalyst. The hydrogen yield of $NaBH_4$ hydrolysis reaction by unsupported catalysts using 20~25 wt% $NaBH_4$ solution was 97.6~98.5% in batch reactor. The hydrogen yield decrease to 95.3~97.0% as the concentration of $NaBH_4$ solution increase to 30 wt%. The loss of unsupported catalyst was less than that of FeCrAlloy supported catalyst during $NaBH_4$ hydrolysis reaction and the loss increased with increasing of $NaBH_4$ concentration. In continuous reactor, hydrogen yield of $NaBH_4$ hydrolysis was 90% using 1.2 g of unsupported Co-P-B catalyst with $3{\ell}/min$ hydrogen generation rate.

Analysis of Groundwater Flow Characterization in Fractured Aquifer System (파쇄대 응회암 대수층의 지하수 유동 특성화 기법)

  • Kim Yong-Je;Kim Tae-Hee;Kim Kue-Young;Hwang Se-Ho;Chae Byung-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.33-44
    • /
    • 2005
  • On the basis of a stepwise and careful integration of various field and laboratory methods the analysis of groundwater flow characterization was performed with five boreholes (BH-1, -2, -3, -4, -5) on a pilot site of Natural Forest Park in Guemsan-gun, Chungcheongbook-do, Korea. The regional lineaments of NW-SE are primarily developed on the area, which results in the development of many fractures of NW-SE direction around boreholes made in the test site for the study. A series of surface geological survey, core logging, geophysical logging, tomography, tracer tests, and heat-pulse flowmeter logging were carried out to determine fracture characteristics and fracture connectivity between the boreholes. In the result of fracture connectivity analysis BH-1 the injection well has a poor connectivity with BH-2 and BH-3, whereas a good with BH-4 and BH-5. In order to analyse the hydraulic connectivity between BH-1 and BH-5, in particular, a conspicuous groundwater outflux in the depth of 12 m and influx in the depth of 65 m and 70 m, but partly in/outflux occurred in other depths in BH-5 were observed as pumping from BH-1. On the other hand, when pumping from BH-5 the strong outflux in the depths of 17 m and 70 m was occurred. The spatial connectivity between the boreholes was examined in the depth of 15 m, 67 m, and 71 m in BH-1 as well as in the depth of 15 m, 17 m, 22 m, 72 m, and 83 m in BH-5.

Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4 (NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구)

  • Jung, Hyeon-Seong;Oh, Sung-June;Jeong, Jae-Jin;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.677-681
    • /
    • 2015
  • Aluminum alloy was examined as a material of low weight reactor for hydrolysis of $NaBH_4$. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in $NaBH_4$ solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of $NaBH_4$ during storage of $NaBH_4$ solution. Therefore stability of $NaBH_4$ and corrosion of aluminum should be considered in determining the optimum NaOH concentration. $NaBH_4$ stability and corrosion rate of aluminum were measured by hydrogen evolution rate. $NaBH_4$ stability was tested at $20{\sim}50^{\circ}C$ and aluminum corrosion was measured at $60{\sim}90^{\circ}C$. The optimum concentration of NaOH was 0.3 wt%, considering both $NaBH_4$ stability and aluminun corrosion. $NaBH_4$ hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at $80{\sim}90^{\circ}C$.

The Potential Energy Surface of BH5 and the Rate of the Hydrogen Scrambling

  • Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.763-770
    • /
    • 2003
  • The $BH_5$ molecule, which is suggested as an intermediate of the acidolysis of $BH_4^-$, contains a weak two-electron-three-center bond and it requires extremely high-level of theories to calculate the energy and structure correctly. The structures and energies of $BH_5$ and the transition state for the hydrogen scrambling have been studied using recently developed multi-coefficient correlated quantum mechanical methods (MCCMs). The dissociation energies and the barrier heights agree very well with the previous results at the CCSD(T)/ TZ(3d1f1g, 2p1d) level. We have also calculated the potential energy curves for the dissociation of $BH_5$ to $BH_3$ and $H_2$. The lower levels of theory were unable to plot correct potential curves, whereas the MCCM methods give very good potential energy curves and requires much less computing resources than the CCSD(T)/ TZ(3d1f1g,2p1d) level. The potential energy of the $BH_5$ scrambling has been obtained by the multiconfiguration molecular mechanics algorithm (MCMM), and the rates are calculated using the variational transition state theory including multidimensional tunneling approximation. The rate constant at 300 K is 2.1 × $10^9s^{-1}$, and tunneling is very important.