DOI QR코드

DOI QR Code

Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4

NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구

  • Received : 2014.12.24
  • Accepted : 2015.03.06
  • Published : 2015.12.01

Abstract

Aluminum alloy was examined as a material of low weight reactor for hydrolysis of $NaBH_4$. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in $NaBH_4$ solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of $NaBH_4$ during storage of $NaBH_4$ solution. Therefore stability of $NaBH_4$ and corrosion of aluminum should be considered in determining the optimum NaOH concentration. $NaBH_4$ stability and corrosion rate of aluminum were measured by hydrogen evolution rate. $NaBH_4$ stability was tested at $20{\sim}50^{\circ}C$ and aluminum corrosion was measured at $60{\sim}90^{\circ}C$. The optimum concentration of NaOH was 0.3 wt%, considering both $NaBH_4$ stability and aluminun corrosion. $NaBH_4$ hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at $80{\sim}90^{\circ}C$.

$NaBH_4$ 가수 분해용 경량반응기의 재질로서 알루미늄 합금을 검토하였다. 알루미늄은 알칼리에 용해되는데, $NaBH_4$ 반응 용액중에 안정화제로 NaOH가 포함되어 있다. 알루미늄의 부식 속도를 낮추기 위해서 NaOH 농도를 낮추면 저장중에 $NaBH_4$가 손실된다. 그래서 최적의 NaOH 농도를 결정할 때 알루미늄 부식과 $NaBH_4$ 안정화를 모두 고려해야 한다. $NaBH_4$ 안정화와 알루미늄 부식속도는 수소발생속도에 의해 측정하였다. $NaBH_4$ 안정화는 $20{\sim}50^{\circ}C$에서 알루미늄 부식속도는 $60{\sim}90^{\circ}C$ 온도에서 실험하였다. 알루미늄 부식과 $NaBH_4$ 안정화를 모두 고려한 최적의 NaOH농도는 0.30 wt% 였다. 알루미늄 합금 6061를 사용해 반응기 온도 $80{\sim}90^{\circ}C$에서 NaOH 0.3 wt%로 200분간 반응을 진행하였다.

Keywords

References

  1. Fernandes, R., Patel, N., Miotello, A. and Filippi, M., "Studies on Catalytic Behavior of Co-Ni-B in Hydrogen Production by Hydrolysis of $NaBH_4$, " J. Mol. Catal. A: Chemical, 298, 1-6(2009). https://doi.org/10.1016/j.molcata.2008.09.014
  2. Soler, L., Macanas, J., Munoz, M. and Casado, J., "Synergistic Hydrogen Generation from Aluminium, Aluminium Alloys and Sodium Borohydride in Aqueous Solutions," Int. J. Hydrogen Energy, 32, 4702-4710(2007). https://doi.org/10.1016/j.ijhydene.2007.06.019
  3. Jung, C. R., Arunabha K., Ku, B. Gil, J. H., Lee, H. R. and Jang, J. H., "Hydrogen from Aluminum in a Flow Reactor for Fuel Cell Applications," J. Power Sources, Vol. 175, 490-494(2008). https://doi.org/10.1016/j.jpowsour.2007.09.064
  4. Parmuzina, A. V. and Kravchenko, O. V., "Activation of Aluminium Metal to Evolve Hydrogen From Water," International J. Hydrogen Energy, 33, 3073-3076(2008). https://doi.org/10.1016/j.ijhydene.2008.02.025
  5. Patel, N., Patton, B., Zanchetta, C., Fernandes, R., Guella, G., Kale, A. and Miotello, A., "Pd-C Powder and Thin film Catalysts for Hydrogen Production by Hydrolysis of Sodium Borohydride," Int. J. Hydrogen Energy, 33(1), 287-292(2008). https://doi.org/10.1016/j.ijhydene.2007.07.018
  6. Patel, N., Fernandes, R., Guella, G., Kale, A., Miotello, A., Patton, B. and Zanchetta, C., "Structured and Nanoparticle Assembled Co-B Thin Films Prepared by Pulsed Laser Deposition: A Very Efficient Catalyst for Hydrogen Production," J. Phys. Chem. C, 112(17), 6968-6976(2008). https://doi.org/10.1021/jp7104192
  7. Guella, G., Patton, B. and Miotello, A., "Kinetic Features of the Platinum Catalyzed Hydrolysis of Sodium Borohydride from $^{11}B$ NMR Measurements," J. Phys. Chem. C, 111(50), 18744-18750 (2007). https://doi.org/10.1021/jp0759527
  8. Metin, O. and Ozkar, S., "Hydrogen Generation from the Hydrolysis of Sodium Borohydride by Using Water Dispersible, Hydrogenphosphate-stabilized Nickel(0) Nanoclusters as Catalyst," Int. J. Hydrogen Energy, 32(12), 1707-1715(2007). https://doi.org/10.1016/j.ijhydene.2006.11.025
  9. Ingersoll, J. C., Mani, N., Thenmozhiyal, J. C. and Muthaiah, A., "Catalytic Hydrolysis of Sodium Borohydride by a Novel nickelcobalt-boride Catalyst," J. Power Sources, 173(1), 450-457(2007). https://doi.org/10.1016/j.jpowsour.2007.04.040
  10. Shang, Y. and Chen, R., "Semiempirical Hydrogen Generation Model Using Concentrated Sodium Borohydride Solution," Energy Fuels, 20(5), 2149-2154(2006). https://doi.org/10.1021/ef050380f
  11. Hwang, B. C., Cho, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "$NaBH_4$ Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy," Korean Chem. Eng. Res., 51(1), 35-41(2013). https://doi.org/10.9713/kcer.2013.51.1.35
  12. Hwang, B. C., Cho, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Durability of Co-P-B/Cu Catalyst for $NaBH_4$ Hydrolysis Reaction," Korean Chem. Eng. Res., 20(4), 627-631(2012).
  13. Moon, G. Y., Lee, S. S., Yang, G. R. and Song, K. H., "Effects of Organic Acid Catalysts on the Hydrogen Generation from $NaBH_4$," Korean J. Chem. Eng., 27(2), 474-479(2010). https://doi.org/10.1007/s11814-010-0072-3