• Title/Summary/Keyword: BET study

Search Result 543, Processing Time 0.024 seconds

The Preparation of Low Cost Activated Carbon Fibers for Removal of Volatile Organic Chemicals and Odor (저가 탄소섬유를 이용한 악취제거 기술 개발)

  • Lim, Yun-Soo;Yoo, Ki-Sang;Kim, Hee-Seok;Chung, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.928-935
    • /
    • 2001
  • In this study, two kinds of activated carbon fibers were prepared from PAN-based stabilized fibers by physical activation with steam. The variations in specific surface area, amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. The activated carbon fibers were prepared by two different methods, namely a 1- and 2-step method. For the 2-step method, carbonization of fibers in $N_2$ atmosphere was carried out to make carbon fibers and then activated by steam. In normal two step steam activation, BET surface area of about $1019m^2/g$ was obtained in the study. In the 1-step steam activation process, the carbonization and activation were simultaneously carried out. In the one step steam activation, BET surface area of $1635m^2/g$ was obtained after heat-treatment at $990^{\circ}C$. However, nitrogen adsorption isotherms for oxidized PAN based activated carbon fibers that were prepared by both methods were type I in the Brunauer-Deming-Deming-Teller (BDDT) classification even though they have different BET surface areas, amounts of iodine adsorption and pore size distributions.

  • PDF

Study on Characteristics and Preparation of Binderless ZSM-5 Granules for Adsorption of Xylene Isomers (Binderless ZSM-5 성형체의 합성 및 자일렌 이성체의 흡착 특성에 관한 연구)

  • Yun, Hyo-Sang;Hong, Ji-Sook;Suh, Jeong-Kwon;Shin, Chae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.417-423
    • /
    • 2010
  • In this study, an effective method to prepare granular binderless ZSM-5 which is as efficient p-xylene separatory adsorbent was explored. Colloidal silica sol 30 wt% solution as an inorganic binder and microcrystalline cellulose as an organic additive were added to ZSM-5 powder ($SiO_2/Al_2O_3$ = 50). Adsorbent with enough strength (0.721 kgf), high crystallinity (94.6%) and high BET specific surface area ($379.2m^2$/g) was obtained by calcination, binderless treatment, ${NH_4}^+$ ion exchange, and activation after spherical granulation process. A batch type adsorption experiment was proceeded with solutions comprising 3 xylene isomers by 1 : 1 : 1 weight ratio to evaluate adsorption characteristics of prepared absorbent. As a result, the obtained binderless ZSM-5 granule showed a higher selective adsorption performance for para-xylene than that of commercial adsorbent.

A Study on the Synthesis of $Mn_3O_4$ and the Decomposition and Adsorption of $CO_2$ ($Mn_3O_4$의 합성과 $CO_2$ 분해 및 흡착에 관한 연구)

  • Kim Seung-Ho;Park Young-Goo;Ko Jae-Churl
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.27-32
    • /
    • 2000
  • In this study, $Mn_3O_4$ was synthesized by the different equivalent ratios using solution of $MnCL_2 {\cdot} 4H_2O$ and NaOH. We have investigated the crystal structure and surface area by XRD, BET Method, studied on the decompositon and adsorption of carbon dioxide with synthesized $Mn_3O_4$. As the results, we surveyed that main peak was $Mn_3O_4$, some Peaks were $MnO_2$ and $Mn_5O_8$ The specific surface area was ranged from $13.92m^2/g$ to $32.33m^2/g$. The decomposition of $CO_2$ was observed by the differential equivalent ratios at $450^{\circ}C$. $CO_2$ was well decomposed at equivalent ratio of 0.75. The amount of chemisorption of $CO_2$ was ranged from 2.885 to 19.628cc/g. Optimal equivalent ratio was 1.00 for the chemisorption of $CO_2$.

  • PDF

The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate (TiO2 nanotube plate의 질산성질소 전기분해 효율 평가)

  • Kim, Da Eun;Lee, Yongho;Han, Heeju;Choi, Hyo yeon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.612-621
    • /
    • 2018
  • In this study, $TiO_2$ nanotube plate and metal electrodes(Copper, Nickel, Stainless Steel, Aluminum, Tin, Titanium) were compared on cathodic reduction of nitrate ($NO_3{^-}-N$) during electrolysis. The electrochemical characteristics were compared based on electrochemical impedance spectroscopy (EIS). The surface morphology was obtained using scanning electron microscopy (SEM) method. Brunauer-Emmett-Teller (BET) method was implemented for the specific surface area analysis of the cathodes. To study kinetics, 90 minute batch electrolysis of nitrate solution was performed for each cathodes. In conclusion, under the condition of relatively low ($0.04 A\;cm^{-2}$) current density, $TiO_2$ nanotube plate showed no surface corrosion during the electrolysis, and the reaction rate was measured the highest in the kinetic analysis.

Heavy Metal Wastewater Treatment (Batch Mode) by Domestic Zeolite (국산(國産) Zeolite를 이용(利用)한 중금속(重金屬) 폐수(廢水) 처리공정(處理工程) 연구(硏究) - Batch Test를 중심(中心)으로 -)

  • Shin, Eung Bai
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.63-68
    • /
    • 1982
  • This study was aimed ultimately to develop an adsorption process treating heavy metal industrial wastewater by utilizing domestically abundant natural zeolite and the study was conducted in a series of investigations. Presented if1 this paper are the results of the preliminary batch mode test. Factors affecting an adsorption process of heavy metals of aqueous waste stream by zeolite are numerous. Factors such as hydrogen ion concentration and temperature are taken into consideration in the investigation to evaluate adsorptive capacity. The mechanisms of adsorption may better be described by an evaluation of adsorption isotherm andi of adsorption kinetics. It is observed from the preliminary investigation that an optimum adsorption occurs at higher pH's than 4. It is further demonstrated that $Cd^{+2}$ adsorption by zeolite follows the BET model better than the Freundlich and the Langmuir model and that the reaction time of at least 10 minutes is required. It is interesting to note that higher adsorptive capacity was found at higher temperature, suggesting that the adsorption is not only due to simple physisorption but also due to chemisorption.

  • PDF

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin

  • Aliyu, A;Abdulkareem, AS;Kovo, AS;Abubakre, OK;Tijani, JO;Kariim, I
    • Carbon letters
    • /
    • v.21
    • /
    • pp.33-50
    • /
    • 2017
  • In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.

A study on the Optimization of Sewage Sludge-based Adsorbent Carbonization Condition for Improving Adsorption Capacity of Hydrogen Sulfide (H2S) (황화수소(H2S) 흡착성능 증진을 위한 하수슬러지 기반 흡착제 탄화조건 최적화 연구)

  • Choi, Sung Yeol;Jang, Young Hee;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.765-771
    • /
    • 2018
  • In this study, the optimization of carbonization conditions in manufacturing processes was performed to improve the absorption performance of sewage sludge based sorbent used for treating $H_2S$ out of all odorous substances generated by various environmental facilities. Adsorbents applied were manufactured from the sewage treatment plant under different carbonization conditions, such as temperature and heating rate, and the correlation between the adsorption performance and physical properties of the adsorbents was verified. As a result, the adsorption performance of sludge at $900^{\circ}C$ with a heating rate of $10^{\circ}C/min$ was the best, and the SEM and BET analysis revealed that specific surface area and characteristics of pore (size, volume) were major parameters for the adsorption. In addition, the effect of K ions used for improving the adsorption performance of the optimum carbonization condition sorbent was insignificant for the sewage sludge based sorbent.

A Study on the NH3-SCR Activity of the VWSbTi According to the Calcination Temperature of WSbTi (WSbTi의 소성온도에 따른 VWSbTi 촉매의 NH3-SCR 효율 연구)

  • Eo, Eun Gyeom;Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.64-70
    • /
    • 2022
  • In this study, an experiment was performed by adding Sb during NH3-selective catalytic reduction (NH3-SCR) while varying calcination temperatures from 400 to 700 ℃ to improve the low temperature denitrification efficiency of VWTi catalyst. As a result, VWSbTi(500) and VWSbTi(600) catalysts corresponding to Sb calcination temperatures of 500~600 ℃ showed the best denitrification performance at low temperatures below 300 ℃. BET, XRD, Raman, XPS, H2-TPR, and NH3-TPD analyses were performed In order to confirm physicochemical properties according to the calcination temperature. In the case of VWSbTi(500) and VWSbTi(600), an acid site increased with the generation of W=O species, and superb activity at low temperatures was exhibited due to the excellent redox characteristics and increase in electron density of tungsten. Furthermore, in the case of VWSbTi(700), as the crystalline V2O5 structure was formed, the denitrification efficiency decreased. Thus the optimum calcination temperature during Sb addition process was confirmed.

Effect of promoter on platinum catalyst for oxidation of VOCs (VOCs 산화반응에서 Pt 촉매에 대한 조촉매의 영향)

  • Kim, Moon-Chan;Shin, Jin-Sil
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.422-432
    • /
    • 2006
  • The volatile organic compounds(VOCs) have been recognized as a major contributor to air pollution. The catalytic oxidation is one of the most important processes for VOCs destruction due to getting high efficiency at low temperature. In this study, monometallic Pt and bimetallic Pt-Ru, Pt-Ir were supported to ${\gamma}-Al_2O_3$. Xylene, toluene and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, XPS, TEM and BET analysis. As a result, Pt-Ru, Pt-Ir bimetallic catalysts showed higher conversion than Pt monometallic catalyst. Pt-Ir bimetallic catalyst showed the highest conversion on the ${\gamma}-Al_2O_3$ support. In the VOCs oxidation, Pt-Ru, Pt-Ir bimetallic catalyst had multipoint active sites, so it improved the range of Pt metal state. Therefore, bimetallic catalysts showed higher conversion of VOCs than monometallic ones. In this study, the use of small amount of Ru, Ir to Pt promoted oxidation conversion of VOCs.

Catalytic Characteristics of Mn-PC for VOCs Combustion (VOCs 연소용 Mn-PC 촉매 특성)

  • Seo, Seong-Gyu;Ma, Zhong-Kun;Liu, Yi;Yoon, Hyung-Sun;Kim, Sang-Chai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.237-242
    • /
    • 2011
  • In this study, the catalytic activity of Mn-Phthalocyanine (Mn-PC) for VOCs (acetadehyde, propionaldehyde and toluene) combustion was determined. The reaction was carried out in a fixed bed reactor at the temperature range of $200{\sim}380^{\circ}C$. We investigated the physicochemical properties of Mn-PC before and after the pretreatment (air, $450^{\circ}C$, 1 hr, 60 cc/min) by TGA (Thermogravimetric Analyzer), BET (Brunauer Emmett Teller), EA (Elemental Analyzer), XRD (X-ray Diffractometer) and SEM (Scanning Electronic Microscope). By TGA analysis, 88 wt.% mass loss of Mn-PC was found at $419^{\circ}C$. The BET surface area of Mn-PC increased after the pretreatment. The decomposition and combustion of organic components in Mn-PC were observed by EA analysis. We also confirmed that Mn-PC had transformed into a new manganese oxide phase ($Mn_3O_4$) after the pretreatment by XRD analysis. By SEM analysis, many of the micropores generated during the pretreatment were found. The catalytic activity of Mn-PC with the pretreatment for propionaldehyde combustion was higher than that of $Mn_3O_4$ and fresh Mn-PC. It showed the catalytic activity of Mn-PC with the pretreatment for VOCs combustion by the order of toluene < acetadehyde < propionaldehyde.