• Title/Summary/Keyword: BET Surface Area

Search Result 645, Processing Time 0.032 seconds

The Study on the Catalytic Performance and Characterization of La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru) for High Temperature Water-gas Shift Reaction with Simuated Coal-derived Syngas (모사된 석탄가스화 합성가스를 이용한 La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru)의 수성가스전이반응 활성 및 특성에 관한 연구)

  • Lee, Seul-Gi;Kwak, Jaehoom;Sohn, Jung Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.543-549
    • /
    • 2013
  • In this study, $La_{0.9}Sr_{0.1}Cr_{0.7}M_{0.3}O_{3{\pm}{\delta}}$ (M=Mn, Ru, Fe, Ni) were prepared by sol-gel method and water gas shift reaction with simulated coal-derived syngas between $400{\sim}650^{\circ}C$ was conducted to evaluate the catalytic activity of prepared catalysts. Physico-chemical properties were characterized by XRD, BET, SEM-EDS and TPR. The formation of perovskite crystallite, $LaCrO_3$ was confirmed and the highest surface area was measured with $La_{0.9}Sr_{0.1}Cr_{0.7}Mn_{0.3}O_{3{\pm}{\delta}}$. Equilibrium conversion of CO above $550^{\circ}C$ was achieved except $La_{0.9}Sr_{0.1}Cr_{0.7}Fe_{0.3}O_{3{\pm}{\delta}}$. and methanation reaction was carried out as side reaction of water gas shift reaction with $La_{0.9}Sr_{0.1}Cr_{0.7}Ni_{0.3}O_{3{\pm}{\delta}}$ and $La_{0.9}Sr_{0.1}Cr_{0.7}Ru_{0.3}O_{3{\pm}{\delta}}$. Conclusively, $La_{0.9}Sr_{0.1}Cr_{0.7}M_n{0.3}O_{3{\pm}{\delta}}$ was the most suitable catalyst of water gas shift reaction above $500^{\circ}C$ for CO conversion and hydrogen production.

A Study on Characteristics of HI Decomposition Using Pt Catalysts on ZrO2-SiO2 Mixed Oxide (ZrO2-SiO2 복합산화물에 담지된 백금 촉매의 요오드화수소 분해 특성 연구)

  • Ko, Yunki;Park, Eunjung;Bae, Kikwang;Park, Chusik;Kang, Kyoungsoo;Cho, Wonchul;Jeong, Seonguk;Kim, Changhee;Kim, Young Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.359-366
    • /
    • 2013
  • This work is investigated for the catalytic decomposition of hydrogen iodide (HI). Platinum was used as active material by loading on $ZrO_2-SiO_2$ mixed oxide in HI decomposition reaction. To obtain high and stable conversion of hydrogen iodide in severe condition, it was required to improve catalytic activity. For this reason, a method increasing dispersion of platinum was proposed in this study. In order to get high dispersion of platinum, zirconia was incorporated in silica by sol-gel synthesis. Incorporating zirconia influence increasing platinum dispersion and BET surface area as well as decreasing deactivation of catalysts. It should be able to stably product hydrogen for a long time because of inhibitive deactivation. HI decomposition reaction was carried out under the condition of $450^{\circ}C$ and 1 atm in a fixed bed reactor. Catalysts analysis methods such as $N_2$ adsorption/desorption analysis, X-ray diffraction, X-ray fluorescence, ICP-AES and CO gas chemisorption were used to measurement of their physico-chemical properties.

Evaluation of Chemical Pre-treatment for the Optimization of CO2 Fixatiom Using by Carbonation Reaction with Serpentine (이산화탄소 광물고정화 효율 증가를 위한 사문석의 화학적 전처리에 관한 연구)

  • Jang, Na Hyung;Shim, Hyun Min;Hua, Xu Li;Kim, Hyung Teak
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.526-532
    • /
    • 2008
  • The proposed $CO_2$ storage technology in the present study is a one-step sequestration process that stabilizes $CO_2$ in a reactor with Serpentine. The advantage of this technology is associated with its high stability of final product so that the entire system is recognized as permanent environment-friendly $CO_2$ removal method. Since the sequestration reaction mechanisms are generally understood that carbonation reaction proceeds with very slow rate, so that pretreatment method to increases reaction rate of $CO_2$ carbonation reaction should be developed. To increase the reactivity of Serpentine with $CO_2$, two different methods of pretreatment are carried out in the present investigation. One is heat-treatment, the other is chemical pretreatment. In this study, only chemical pretreatment is considered leaching method of magnesium from Serpentine using sulfuric acid at the various reaction temperatures, times, and acid concentrations. Experimental results illustrated that pretreatment by sulfuric acid increases surface area of serpentine from $11.1209m^2/g$ to $98.7903m^2/g$ and extracts magnesium compounds. Single variable experiment demonstrated the enhancements of magnesium extraction with increased reaction temperature and time. Amount of magnesium extraction is obtained by using the data of ICP-AES as maximum extraction condition of magnesium is 2 M acid solution, $75^{\circ}C$ and 1hr. After performing chemical pretreatment, carbonation yield increased from 23.24% to 46.30% of weight.

$CO_2$ Sensing Characteristics of Carbon-nanofibers Based on Effects of Porosity and Amine Functional Group (다공성 및 아민 작용기에 따른 탄소나노섬유의 $CO_2$ 감응특성)

  • Kim, Jong Gu;Kang, Seok Chang;Shin, Eunjeong;Kim, Da Young;Lee, Jin Hee;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • Porous carbon nanofibers were prepared as a gas sensor electrode to study the $CO_2$ sensing property based on effects of porosity and introduced amine functional groups. Electrospun fibers were obtained by using electrospinning method with polyacrylonitrile precursor and they were treated by the thermal treatment and chemical activation. Amine functional groups were introduced by the liquid state treatment using diethylenetriamine. The specific surface area increased up to $2000m^2/g$ by the chemical activation. The Introduced amine functional group was identified using FT-IR spectroscopy. $CO_2$ gas sensing property was improved as four folds via introduced amine functional groups on the activated carbon nanofiber. In conclusion, the gas sensing property was improved based on the developed porosity by the chemical activation and the chemical attraction of $CO_2$ gas by introduced functional groups.

Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics (수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구)

  • Hong, Seok Bok;Kang, On Yu;Hwang, Sung Yeon;Heo, Young Min;Kim, Jung Won;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.653-658
    • /
    • 2016
  • In this work, we developed a synthetic method for preparing one-dimensional $MnO_2$ nanowires through a hydrothermal method using a mixture of $KMnO_4$ and $MnSO_4$ precursors. As-prepared $MnO_2$ nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of $MnO_2$ nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of $MnO_2$ nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. $MnO_2$ nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.

BaCeO3-BaZrO3 Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs) (BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발)

  • An, Hyegsoon;Shin, Dongwook;Choi, Sung Min;Lee, Jong-Ho;Son, Ji-Won;Kim, Byung-Kook;Je, Hae June;Lee, Hae-Weon;Yoon, Kyung Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.271-277
    • /
    • 2014
  • To overcome the limitations of the solid oxide fuel cells (SOFCs) due to the high temperature operation, there has been increasing interest in proton conducting fuel cells (PCFCs) for reduction of the operating temperature to the intermediate temperature range. In present work, the perovskite $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-\delta}$ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via solid state reaction (SSR) and adopted as an electrolyte materials for PCFCs. Powder characteristics were examined using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were obtained in all compositions, and chemical stability was improved with increasing Zr content. Anode-supported cell with $Ni-BaCe_{0.55}Z_{0.3}Y_{0.15}O_{3-\delta}$ (BCZY3) anode, BCZY3 electrolyte and BCZY3-$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) composite cathode was fabricated and electrochemically characterized. Open-circuit voltage (OCV) was 1.05 V, and peak power density of 370 ($mW/cm^2$) was achieved at $650^{\circ}C$.

Groundwater of bed rocks in South Korean Penninsula (한반도의 암반 지하수에 관한 연구)

  • 한정상
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.73-81
    • /
    • 1981
  • More than 650 numbers of water well ranging in depth from 100M to 200M were installed in South Korean Penninsula during the last decade for the purpose of industrial use and municipal water supply. Those data were compiled and synthesized by writer to determine their hydrogeologic occurences in accordance with their geologic and areal characteristics. Rocks yielding the deep seated ground water beared in the geologic primary and secondary porosities are classified into 6 groups according to their geologic, hydrogeologic, and topographic characteristics, that are: volcanic, sedimentary, meta-sediment and/or schist, andesitic, gneissic, and granitic rocks. The order of ground water productivity of the groups is as written above. Even granitic rocks including porphyries, granite, and intermediate and basic plutonic rocks is considered to be the most poorest ground water yielding group among 6, it's average yield form a single well with average drilling depth of 116M is about 225 cubic meters per day if it's drilling site is properly located. Generally speaking, seizable geologic structures such as fractured, sheared, and faulted zone at the flat surface and valley center yield almost 310% more of deep seated bet rock ground water in comparision with minor structures of joints, bedding planes, and so on that are occured at high land. 50 numbers of water well drilled at crystalline rocks were specially checked and measured it's ground water yie 1ds at each drilled depth to determine each interval's productivity while hammer drilling was going on. The results indicate that the specific capacity and yield of each water well at a depth below 70M to 80M was almost neglegible. It means that optimum well depth of crystalline rocks, except the area having seizable geologic structures, shall be not deeper than 80M.

  • PDF

The Characterization and Sintering Behavior of Alumina Powder Prepared by Heat-treatment of Artificial Marble Waste Containing $Al(OH)_3$ Powder ($Al(OH)_3$ 함유(含有) 인조대리석폐기물(人造大理石廢棄物)로부터 제조(製造)된 알루미나 분말(粉末)의 특성(特性) 및 소결거동(燒結擧動) 연구(硏究))

  • Ryu, Sung-Soo;Seo, Sung-Gyu;Kim, Hyung-Tae;Kim, Hyeong-Jun;Park, Jun-Gyu;Yang, Jae-Gyu
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.69-76
    • /
    • 2009
  • Alumina powder was prepared from heat-treatment of artificial marble waste fine aggregate containing $Al(OH)_3$ for the purpose of the feasibility of its recycling. Artificial marble waste was heat-treated between $500^{\circ}C$ and $1000^{\circ}C$ and XRD, BET surface area, BJH pore size distribution and adsorption of As were analyzed for heat-treated powder. It was found that the adsorption efficiency of As was significantly affected by phase composition of alumina powder rather than its physical characteristic. Heat-treated powder compact was sintered to produce the pellet. Alumina pellet with porosity more than 60% could be obtained after sintering below $1200^{\circ}C$ and also the addition of glass powder as a sintering aid had a positive effect on lowering sintering temperature, led to the high porosity near 60% and adsorption of As over 60% even at $900^{\circ}C$.

Microstructure and Properties of Organic-Inorganic Hybrids(PDMS/SiO$_2$) Through Variations in Sol-Gel Processing (졸-겔공정의 변수조절을 통해 제조된 유기-무기복합체 (PDMS/SiO$_2$)의 미세구조와 특성)

  • Eun, Hui-Tae;Hwang, Jin-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.94-103
    • /
    • 2001
  • SiO$_2$ and PDMS/SiO$_2$ xerogels which are derived PDMS into TEOS have been synthesized by sol-gel process and controlled pore size and distribution through 2 step acid/base catalyzed processes using HCI and NH$_4$OH as a catalyst. In HCl catalyzed SiO$_2$ and PDMS/SiO$_2$ xerogels, pH and gellation time of xerogel were 2.3~2.5 and 12~13 days, respectively, and the shape of xerogel was identified to pellet type and column type. Under acidic condition of final reaction solution, the hydrolysis rate is accelerating, resulting in long gel times. The shape of xerogel is pellet type. In contrast, under less acidic condition, the condensation rate is accelerating, resulting in shorter gel times and the shape of xerogel is column type. The surface area and average Pore size were changed 400$\rightarrow$600($\m^2$/g) and 15$\rightarrow$28$\AA$, respectively, depending to the increase of the mole ratio of HCl/NH$_4$OH, and represented uniform pore size distribution. It is that all the alkoxide groups are hydrolyzed by HCl after the first step and the condensation rate is enhanced by NH$_4$OH. The regular backbone structures of silica are formed at low temperature and the uniform pores are produced by heat treatment.

  • PDF

Gas Permeability through Mixed Matrix Membrane of Poly(dimethylsiloxane) with Aluminosilicate Hollow Nanoparticles (알루미노규산염 나노입자를 이용한 Poly(dimethylsiloxane) 복합매질 분리막의 기체투과 특성)

  • Fang, Xiaoyi;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • In order to improve gas separation properties of polymeric membranes which have been widely applied in the industry field, aluminosilicate hollow nanoparticles named as allophanes were synthesized by sol-gel method and formulated in Poly(dimethylsiloxane) (PDMS) matrix to investigate the gas separation properties of PDMS membrane. Transmission electron microscope (TEM), Energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), Surface area and pore size analyzer (BET) and Fourier transform infrared spectrophotometer (FTIR) were carried out to characterize the synthetic allophanes. Then the PDMS mixed matrix membranes were prepared by adding different volume fraction of allophanes. To examine the effect of allophanes addition in PDMS matrix using unmodified allophane and modified ones, the gas permeation experiments were performed using oxygen, nitrogen, methane and carbon dioxide. As the volume fraction of modified allophane increased up to 4.05 Vol% the permeability of four test gases through PDMS mixed matrix membranes increased. Also, the selectivity of $O_2/N_2$ and $CO_2/CH_4$ increased with the contents of the modified allophane. Further improvement of gas separation properties of PDMS mixed matrix membranes containing higher volume percent of allophanes can be expected as long as well dispersion of allophanes in PDMS matrix can be achieved for better PDMS membranes.