DOI QR코드

DOI QR Code

The Study on the Catalytic Performance and Characterization of La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru) for High Temperature Water-gas Shift Reaction with Simuated Coal-derived Syngas

모사된 석탄가스화 합성가스를 이용한 La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru)의 수성가스전이반응 활성 및 특성에 관한 연구

  • Lee, Seul-Gi (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Kwak, Jaehoom (Department of Energy Storage & Conversion Engineering, Chonbuk National University) ;
  • Sohn, Jung Min (Department of Mineral Resources and Energy Engineering, Chonbuk National University)
  • 이슬기 (전북대학교 자원에너지공학과) ;
  • 곽재훈 (전북대학교 에너지저장변환공학과) ;
  • 손정민 (전북대학교 자원에너지공학과)
  • Received : 2013.11.20
  • Accepted : 2013.12.31
  • Published : 2013.12.31

Abstract

In this study, $La_{0.9}Sr_{0.1}Cr_{0.7}M_{0.3}O_{3{\pm}{\delta}}$ (M=Mn, Ru, Fe, Ni) were prepared by sol-gel method and water gas shift reaction with simulated coal-derived syngas between $400{\sim}650^{\circ}C$ was conducted to evaluate the catalytic activity of prepared catalysts. Physico-chemical properties were characterized by XRD, BET, SEM-EDS and TPR. The formation of perovskite crystallite, $LaCrO_3$ was confirmed and the highest surface area was measured with $La_{0.9}Sr_{0.1}Cr_{0.7}Mn_{0.3}O_{3{\pm}{\delta}}$. Equilibrium conversion of CO above $550^{\circ}C$ was achieved except $La_{0.9}Sr_{0.1}Cr_{0.7}Fe_{0.3}O_{3{\pm}{\delta}}$. and methanation reaction was carried out as side reaction of water gas shift reaction with $La_{0.9}Sr_{0.1}Cr_{0.7}Ni_{0.3}O_{3{\pm}{\delta}}$ and $La_{0.9}Sr_{0.1}Cr_{0.7}Ru_{0.3}O_{3{\pm}{\delta}}$. Conclusively, $La_{0.9}Sr_{0.1}Cr_{0.7}M_n{0.3}O_{3{\pm}{\delta}}$ was the most suitable catalyst of water gas shift reaction above $500^{\circ}C$ for CO conversion and hydrogen production.

Keywords

References

  1. D. S. Newsome, "The Water Gas Shift Reaction", Catal. Rev.-Sci. Eng, Vol. 21, 1980, pp. 275-318. https://doi.org/10.1080/03602458008067535
  2. S. H. Lee, J. N. Kim, W. H. Eom and I. H. Beak, "Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier", Trans. Of the Korean Hydrogen and New Energy Society, Vol. 24, 2013, pp. 12-19. https://doi.org/10.7316/KHNES.2013.24.1.012
  3. U. J. Lee, K. H. Kim, M, Oh, "Multiscale Modeling and Simulation of Water Gas Shift Reactor", Korean Chem. Eng. Res., Vol. 45, 2007, pp. 582-590.
  4. L. Li, L. Song, H. Wang, C. Chen, Y. She, Y. Zhan, X. Lin and Q. Zheng, "Water-gas shift reaction over CuO/$CeO_2$ catalysts : Effect of $CeO_2$ supports previously prepared by precipitation with different precipitants", Int. J. Hydrogen Energy Vol. 36, 2011, pp. 8839-8849. https://doi.org/10.1016/j.ijhydene.2011.04.137
  5. Y. Sun, S. S. Hla, G. J. Duffy, A. J. Cousins, D. French, L. D. Morpeth, J. H. Edwards and D.G. Roberts, "Effect of Ce on the structural features and catalytic properties of $La_{(0.9-X)}CeXFeO_3$ perovskite-like catalysts for the high temperature water-gas shift reaction", Int. J. Hydrogen Energy Vol. 36, 2011, pp. 79-86. https://doi.org/10.1016/j.ijhydene.2010.09.093
  6. M. Abdollahi, J. Yu, P. K. T. Liu, R. Ciora, M. Sahimi and T. T. Tsotsis, "Hydrogen production from coal-derived syngas using a catalytic membrane reactor based process", J. Membr. Sci. Vol. 363, 2010, pp. 160-169. https://doi.org/10.1016/j.memsci.2010.07.023
  7. S. H. Lee, J. N. Kim, W. H. Eom, S. K. Ryi, J. S. Park and I. H. Beak, "Development of pilot WGS/multi-layer membrane for $CO_2$ capture", Chem. Eng. J. Vol. 207-208, 2012, pp. 521-525. https://doi.org/10.1016/j.cej.2012.07.013
  8. S. M. Khetre, H. V. Jadhav and S. R. Bamane, "Synthesis and characterization of nanocrystalline $LaCrO_3$ by combustion route", Rasayan J. Chem. Vol. 2, 2009, pp. 174-178.
  9. H. Xiong, G. J. Zhang, J. Y. Zheng and Y. Q. Jia, "Synthesis, crystal structure and electric conductivity of $La_{0.9}Ca_{0.1}Cr_{0.5}B_{0.5}O_3$ (B=Mn, Fe, Ni), Materials Letters, Vol. 51, 2001, pp. 61-67. https://doi.org/10.1016/S0167-577X(01)00265-8
  10. S. Ponce, M. A. Pena and J. L. G. Fierro, "Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites", Appl. Catal. B: Environmental, Vol. 24, 2000, pp. 193-205. https://doi.org/10.1016/S0926-3373(99)00111-3
  11. B. Thirupathi, P. G. Smirniotis, "Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/$TiO_2$ catalyst and its effect on the selective reduction of NO with $NH_3$ at low-temperatures", Appl. Catal. B : Environ, Vol. 110, 2011, pp. 195-206. https://doi.org/10.1016/j.apcatb.2011.09.001
  12. B. Echchahed, H. Alamdari and S. Kaliaguine, "Well dispersed Co by reduction of $LaCoO_3$ perovskite", Int. J. Chem. React. Eng. Vol. 4, 2006.
  13. J. R. Kim, N. H. Kim and J. M. Sohn, "Study of Catalytic Performance of $La_{0.7}Sr_{0.3}Cr_{1-x}Ni_xO_3$ Perovskite for Steam Reforming of Propane", Korean Chem. Eng. Res., Vol. 49, No. 6, 2011, pp. 715-719. https://doi.org/10.9713/kcer.2011.49.6.715
  14. Ataullah Khna, Panagiotis G. Smitniotis, "Relationship between temperature programmed reduction profile and activity of modified-based catalysis for WGS reaction", J. Mole. Catal. A : Chem, Vol. 280, 2008, pp. 43-51. https://doi.org/10.1016/j.molcata.2007.10.022
  15. S. Hosokawa, H. Kanai, K. Yutani, Y. Taniguchi, Y. Saito and S. Imamura, "State of Ru on $CeO_2$ and its catalytic activity in wet oxidation of acetic acid" Appl. Catal. B. Environ, Vol. 45, 2003, pp. 181-187. https://doi.org/10.1016/S0926-3373(03)00129-2