$CO_2$ Sensing Characteristics of Carbon-nanofibers Based on Effects of Porosity and Amine Functional Group

다공성 및 아민 작용기에 따른 탄소나노섬유의 $CO_2$ 감응특성

  • Kim, Jong Gu (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kang, Seok Chang (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Shin, Eunjeong (Korea Basic Science Institute (KBSI)) ;
  • Kim, Da Young (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Lee, Jin Hee (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
  • 김종구 (충남대학교 공과대학 정밀응용화학과) ;
  • 강석창 (충남대학교 공과대학 정밀응용화학과) ;
  • 신은정 (한국기초과학지원연구원 전주센터) ;
  • 김다영 (충남대학교 공과대학 정밀응용화학과) ;
  • 이진희 (충남대학교 공과대학 정밀응용화학과) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Published : 2012.02.10

Abstract

Porous carbon nanofibers were prepared as a gas sensor electrode to study the $CO_2$ sensing property based on effects of porosity and introduced amine functional groups. Electrospun fibers were obtained by using electrospinning method with polyacrylonitrile precursor and they were treated by the thermal treatment and chemical activation. Amine functional groups were introduced by the liquid state treatment using diethylenetriamine. The specific surface area increased up to $2000m^2/g$ by the chemical activation. The Introduced amine functional group was identified using FT-IR spectroscopy. $CO_2$ gas sensing property was improved as four folds via introduced amine functional groups on the activated carbon nanofiber. In conclusion, the gas sensing property was improved based on the developed porosity by the chemical activation and the chemical attraction of $CO_2$ gas by introduced functional groups.

다공성 탄소나노섬유의 아민 작용기에 따른 $CO_2$ 가스 감응특성을 고찰하고자, 아민작용기가 도입된 다공성 탄소나노섬유 기반 $CO_2$ 가스센서를 제조하였다. Polyacrylonitrile를 전구체로 하여 전기방사법을 통해 나노섬유를 제조하였으며, 열처리 및 화학적 활성화 공정, 그리고 Diethylenetriamine 액상처리법을 통하여 아민작용기가 도입된 다공성 탄소나노섬유를 제조하였다. BET 비표면적 분석결과, 화학적 활성화법에 의해 최대 $2000m^2/g$까지 탄소나노섬유의 비표면적이 향상됨을 확인하였으며, FT-IR 분광법을 통해 아민 작용기의 도입을 확인하였다. 아민 작용기가 도입된 가스센서의 $CO_2$ 가스 감응특성은 다공성 탄소섬유 기반 가스센서에 비해 약 4배 향상됨을 확인하였다. 결과적으로 화학적 활성화법에 의해 발달된 기공특성과 아민작용기 도입에 따른 화학흡착 유도에 의하여 감응특성이 향상되었음을 확인하였다.

Keywords

References

  1. M. Morio, T. Hyodo, Y. Shimizu, and M. Egashira, Sens. Actuator B-Chem., 139, 563 (2009). https://doi.org/10.1016/j.snb.2009.03.038
  2. S. C. Kang, J. S. Im, and Y. S. Lee, Appl. Chem. Eng., 22, 243 (2011).
  3. Y. Sadaoka, Sens. Actuator B-Chem., 121, 194 (2007). https://doi.org/10.1016/j.snb.2006.09.019
  4. S. J. Kim, J. of the Korean Ins. of Electrical, 19, 405 (2006).
  5. S. Sanvito, Y. K. Kwon, D. Tomaanek, and C. J. Lambert, Phys. Rev. Lett., 84, 1974 (2000). https://doi.org/10.1103/PhysRevLett.84.1974
  6. S. Peng, K. Cho, P. Qi, and H. Dai, Chem. Phys. Lett., 387, 271 (2004). https://doi.org/10.1016/j.cplett.2004.02.026
  7. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science, 287, 622 (2000). https://doi.org/10.1126/science.287.5453.622
  8. S. J. Park, K. D. Kim, and J. R. Lee, J. of Korean Ind. & Eng. Chemistry, 9, 920 (1998).
  9. J. S. Im, S. J. Park, and Y. S. Lee, J. Colloid Interface Sci., 314, 32 (2007). https://doi.org/10.1016/j.jcis.2007.05.033
  10. J. S. Im, S. J. Park, T. J. Kim, Y. H. Kim, and Y. S. Lee, J. Colloid Interface Sci., 318, 42 (2008). https://doi.org/10.1016/j.jcis.2007.10.024
  11. S. K. Nataraj, B. H. Kim, J. H. Yun, D. H. Yun, D. H. Lee, T. M. Aminabhavi, and Y. K. Yang, Carbon Lett., 9, 108 (2008). https://doi.org/10.5714/CL.2008.9.2.108
  12. J. Y. Park, I. H. Lee, and G. N. Bea, J. Ind. Eng. Chem., 14, 707 (2006).
  13. J. H. Kim, E. Jeong, S. H. Lee, W. H. Han, and Y. S. Lee, Appl. Chem. Eng., 21, 311 (2010).
  14. F. J. Holler, D. A. Skoog, and S. R. Crouch, Principles of Instrumental Analysis, 420, Science plus (2008).
  15. J. Moon, J. A. Park, S. J. Lee, T. Zyung, and I. D. Kim, Sens. Actuator B-Chem., 149, 301 (2010). https://doi.org/10.1016/j.snb.2010.06.033
  16. W. S. Cho, S. I. Moon, K. K. Paek, Y. H. Lee, J. H. Park, and B. K. Ju, Sens. Actuator B-Chem., 119, 180 (2006). https://doi.org/10.1016/j.snb.2005.12.004
  17. J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imasaka, and M. Hara, Sens. Actuator B-Chem., 114, 943 (2006). https://doi.org/10.1016/j.snb.2005.08.043
  18. J. S. Im, S. C. Kang, S. H. Lee, and Y. S. Lee, Carbon, 48, 2573 (2010). https://doi.org/10.1016/j.carbon.2010.03.045
  19. D. I. Jang, K. S. Cho, and S. J. Park, J. Korean Ind. Eng. Chem., 20, 658 (2009).
  20. Y. W. Park, Separation of $CO_2$ using amine impregnated mesoporous materials, Chungnam National University, Deajeon, Korea (2008).
  21. P. Ratnasamy, Microporous Mesoporous Mat., 90, 314 (2006). https://doi.org/10.1016/j.micromeso.2005.10.043
  22. S. C. Kang, J. S. Im, and Y. S. Lee, Appl. Chem. Eng., 22, 243 (2010).