• Title/Summary/Keyword: BER Analysis

Search Result 569, Processing Time 0.024 seconds

A Study on Interference Analysis between FHSS and DSSS Short Range Radio Devices (FHSS 및 DSSS 방식 소출력 무선기기간 간섭 분석에 관한 연구)

  • Kim, Jin-Young;Kim, Eun-Cheol;Yang, Jae-Soo;Ryu, Chung-Sang;Oh, Seong-Taek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.271-279
    • /
    • 2008
  • In this paper, we investigate interference between short-range radiocommunication devices(SRDs) with frequency hopping spread spectrum(FHSS) and direct sequence spread spectrum(DSSS) methods when they are in the same frequency bands. In order to analyze interference from unwanted emission of SRD with DSSS to that of FHSS, Monte-carlo(MC) simulation method is employed and interference probabilities are calculated. We simulate interference scenarios in accordance with several duty cycles and bandwidths. It is also assumed that the propagation model is free space. The effect of distance between interfering transmitter and victim receiver is analyzed and bit error rate(BER) is simulated. From the interference analysis results, it is shown that duty cycle affects compatibility more than band-width does. Also, we can make sure of the separation distance which satisfies BER criterion when there are only one interfering transmitter and multiple interfering transmitters.

Performance Analysis of Mobile Internet System in Inter-cell Interference Environment (인접 셀 간섭 환경에서 모바일 인터넷 시스템의 성능 분석)

  • Roh, Jae-Sung;Kim, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.96-102
    • /
    • 2012
  • The goal of mobile internet system is to provide a high-data-rate, low-latency and optimized packet radio access technology supporting flexible bandwidth deployments. Therefore, network architecture is designed with the goal to support packet-switched traffic with seamless mobility, quality of service and minimal latency. An important requirement for the mobile internet system is improved cell-edge BER performance and data throughput. This is to provide some level of service consistency in terms of geographical coverage as well as in terms of available data throughput within the communication coverage area. In a cellular system, however, the signal to interference plus noise power ratio gap between cell-center and cell-edge users can be of the order of 20 [dB]. The disparity can be even higher in a communication coverage limited cellular system. This leads to vastly lower data throughputs for the cell-edge users relative to cell-center users creating a large QoS gap. This paper proposes a analytical approach that tries to reduce inter-cell interference, and shows the SIR and BER performance according to the OFDM system parameters in mobile Internet environment.

Performance Analysis of a Synchronization Algorithm For in Multimedia Wireless Channel (멀티미디어 무선채널 환경에서 동기 알고리즘 성능분석)

  • 김동욱;윤종호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.880-883
    • /
    • 2002
  • In this paper, we propose the synchronization recovery algorithm which is suitable to wireless multimedia of wireless channel situation which is being used OFDM signaling method. The basic of the suggested clock synchronization. restoration Algorithm is to getting the shock response of channel or getting the multipath strength profile through IFFT after the getting the frequency, response of deducted channel from channel deductor of receiver and to trace the location in the channel energy concentrated area of timing area. And it also analysis the start point of 64-QAM and 16-QAM if the sampling clock offset has the sample of $\pm$1-3, and we identified the occurance of performance deterioration when occures more than 2 samples of offset to compare with star point and BER performance in optimum sampling point result of BER performance checking, and we know that the recovery algorithm proposed algorithm also provide excellent synchronization characteries under frequency, selecting fading channel as result of simulation.

  • PDF

Analysis of IEEE 802.11a wireless LAN system considering frequency offset compensation and channel estimation in the indoor multipath channel (실내 다중경로 채널에서 주파수 오프셋 보상 및 채널 추정을 고려한 IEEE 802.11a 무선 LAN 시스템의 성능 분석)

  • 오동진;김철성
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.9
    • /
    • pp.47-54
    • /
    • 2004
  • The previous works for WLAN system based on OFDM is mainly individual study for independent frequency offset or symbol synchronization. In this paper, the performance of IEEE 802.11a WLAN(Wireless Local Area Network) system in the realistic indoor multipath channel models is analyzed with frequency offset compensation and channel estimation methods. For the performance analysis of the WLAN system indoor Rayleigh multipath channels are adopted, and the BER(Bit Error Rate) of WLAN system is calculated with y2 code-rate 16-QAM based on standard specification. From the simulation results, the difference of required Eb/No for BER of 10-3 is 1-2dB between the channel estimation and frequency offset compensation, and perfect channel estimation and no frequency offset.

Performance Analysis of M-ary UWB System using MHP Pulses in the Presence of Timing Jitter (타이밍 지터 환경에서 MHP 펄스를 이용한 M 진 초광대역 시스템의 성능분석)

  • Hwang, Jun Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.69-76
    • /
    • 2015
  • In this paper, we propose and analyze a M-ary transmission scheme in time hopping ultra-wide band(UWB) system using mutually orthogonal modified Hermite polynomial(MHP) pulses. The proposed M-ary transmission scheme employs the orthogonal property between different ordered pulses and N data bits make the M-ary signals by linear combination of M MHP pluses. The theoretical analysis and simulation results show that the proposed system has better performance and higher data rate than conventional M-ary UWB system. We derive the general form of correlation function for MHP pulses and analyze bit error rate(BER) performance over additive white Gaussian noise(AWGN) with the presence of timing jitter. We show that the proposed system has the improved BER performance and robustness to timing jitter and low power spectrum density compared with conventional M-ary UWB system.

Performance Improvement of DS-CDMA System by Multi-User Interference Cancellation Techniques (다중접속간섭 제거기법에 의한 DS-CDMA 시스템의 성능 개선)

  • 최충열;홍주석;김봉철;오창헌;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.506-519
    • /
    • 1999
  • An adaptive array antennal and a CCI canceller have been considered as techniques for cancelling Multi-User Interference(MUI) in Direct Sequence Code Division Multiple Access(DS-CDMA) system. These techniques have different problems respectively in the process of cancelling MUI as the number of users increases. For that reason, the scheme which can cancel MUI effectively by compensating for the problems of each of the techniques has been required. For the scheme, the technique to connect an adaptive array antenna and a CoChannel Interference(CCI) canceller in cascade form has been studied. In the existing study about the cascade connection method, the effect of cancelling MUI about two interference signals is analyzed, but the analysis for the quantitative BER(Bit Error Rate) improvement according to the number of users is not considered. Therefore, in this paper, we have analyzed the degree of BER performance improvement quantitatively according to the number of users by introducing the receiving system, which connects an adaptive array antenna and a CCI canceller to a DS-CDMA system in cascade form. For the method of analyzing the performance, we have performed the theoretical analysis and the simulation, considering the case of adopting only an adaptive array antenna and of cascade connection respectively, and having compared and analyzed the results. From the results, it is confirmed that in the case of adopting only an adaptive array antenna, the problems occur in the process of cancelling MUI according to the number of users and the receiving direction of interference signals, and can be compensated by the cascade connection method. In conclusion, we have known that MUI is cancelled effectively by using the cascade connection method, and the much better BER performance improvement is obtained.

  • PDF

Performance Analysis of Multicarrier CDMA System with Adaptive Modulators in Rayleigh Fading Channel (레일레이 페이딩 환경하에서 적응형 변조기를 적용한 다중 반송파 CDMA 시스템의 성능 분석)

  • Lee, Kwang-Hee;Kim, Hang-Rae;Han, Tae-Young;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1300-1310
    • /
    • 2003
  • In this paper, the performance of a multicarrier CDMA system using adaptive modulation and adaptive subchannel allocation scheme is analyzed in Rayleigh fading channel. The proposed adaptive modulator consists of modulation schemes using QPSK 16 QAM, 64 QAM and 256 QAM and constellations are pointed by Gray code. In addition, the threshold of the analysis is average E$\_$b//N$\_$o/ when the BER is 1 %. In the multicarrier system with adaptive subchannel allocation scheme, each DS waveform of user is transmitted over the K subchannels with the biggest fading among L subchannels. In case of the proposed system, total 4 subchannels are used and data are transmitted over 2 subchannels with the biggest fading, which results in the threshold of each channels is 5.2 dB, 9 dB, 13.2 dB and 8.4 dB, 12.2 dB, 16.3 dB. In the case of proposed system, the BER of 10$\^$-3/ is satisfied if average E$\_$b//N$\_$o/ is 8.1 dB. This is increased performance of 12.9 dB in comparison with conventional system. The BPS according to average channel is needed average E$\_$b//N$\_$o/ of about 15 dB in 7 bit. In the case of subchannel error, the BER of 10$\^$-3/ is 13.6 dB and is declined about 5.5 dB.

An Efficient Algorithm for Performance Analysis of Multi-cell and Multi-user Wireless Communication Systems

  • Wang, Aihua;Lu, Jihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2035-2051
    • /
    • 2011
  • Theoretical Bit Error Rate (BER) and channel capacity analysis are always of great interest to the designers of wireless communication systems. At the center of such analyses people are often encountered with a high-dimensional multiple integrals with quite complex integrands. Conventional Gaussian quadrature is inefficient in handling problems like this, as it tends to entail tremendous computational overhead, and the principal order of its error term increase rapidly with the dimension of the integral. In this paper, we propose a new approach to calculate complex multi-fold integrals based on the number theory. In contrast to Gaussian quadrature, the proposed approach requires less computational effort, and the principal order of its error term is independent of the dimension. The effectiveness of the number theory based approach is examined in BER and capacity analyses for practical systems. In particular, the results generated by numerical computation turn out in good match with that of Monte-Carlo simulations.

Performance Analysis of UWB Systems in the Presence of Timing Jitter

  • Guvenc, Ismail;Arslan, Huseyin
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2004
  • In this paper, performances of different ultra-wideband (UWB) modulation schemes in the presence of timing jitter are evaluated and compared. Static and Rayleigh fading channels are considered. For fading channels, Oat and dispersive channels are assumed. First, bit error rate (BER) performances for each case are derived for a fixed value of timing jitter. Later, a uniform distribution of jitter is assumed to evaluate the performance of the system, and the theoretical results are verified by computer simulations. Finger estimation error is treated as timing jitter and an appropriate model is generated. Furthermore, a worst case distribution that provides an upper bound on the system performance is presented and compared with other distributions. Effects of timing jitter on systems employing different pulse shapes are analyzed to show the dependency of UWB performance on pulse shape. Although our analysis assumes uniform timing jitter, our framework can be used to evaluate the BER performance for any given probability distribution function of the jitter.

Analysis of Communication Performance According to Detection Sequence of MMSE Soft Decision Interference Cancellation Scheme for MIMO System (다중 입출력 시스템 MMSE 연판정 간섭 제거 기법의 검출 순서에 따른 통신 성능 분석)

  • Lee, Hee-Kwon;Kim, Deok-Chan;Kim, Tae-Hyeong;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.636-642
    • /
    • 2019
  • In this paper, we analyzed BER (Bit Error Rate) communication performance according to the detection order of MMSE (Minimum Mean Square Error) based soft decision interference cancellation. As the detection order method, antenna index order method, absolute value magnitude order method of channel elements, absolute value sum order method of channel elements, and SNR (Signal Noise Ratio) order method are proposed. BER performance for the scheme was measured and analyzed. As a simulation environment, 16-QAM (Quadrature Amplitude Modulation) modulation is used in an uncoded environment of an M×M multiple-input multiple-output system, and an independent Rayleigh attenuation channel is considered. The simulation results show that the performance gain is about 1.5dB when the SNR-based detection order method is M=4, and the performance gain is about 3.5dB when M=8 and about 3.5dB when M=16. The more BER performance was confirmed, the more the detection order method of the received signal prevented the interference and error spreading occurring in the detection process.