• Title/Summary/Keyword: BENOMYL

Search Result 161, Processing Time 0.026 seconds

Operator exposure risk assessment of benzimidazole fungicides on Korean agricultural condition (Benzimidazole계 살균제의 농작업자 위해성평가)

  • Lee, Je-Bong;Shin, Jin-Sup;Jeong, Mi-Hye;Park, Yeon-Ki;Im, Geon-Jae;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.347-353
    • /
    • 2005
  • Pesticide risk assessment for pesticide operators as well as for consumers has become one of the pesticide regulatory tools to reduce any unreasonable adverse health effects from pesticide use. The risk for pesticide operators can be quantified by comparing the acceptable operator exposure level(AOEL) with exposure level during pesticide application. This study is to evaluate the risk of benzimidazole fungicides application worker. The exposure level of pesticide applicators were calculated using Japanese operator exposure study tested with EPN 45% EC. The AOELs for pesticides were obtained dividing relevant lowest no observed abuse effect levels(NOAELs) for the exposure scenario into uncertainty factor, 100. For the non-cancer and cancer occupational risk assessment, $Q_1^*$ produced by US/EPA and life time average daily dose(LADD) calculated from average daily dose(ADD), treatment days per year, worked years for life time were used. Operator exposure for benzimidazole fungicides application were benomyl 0.2, carbendazim 0.36 and thiophanate-methyl 0.42 mg/kg/day. Short-term AOELs for benomyl, carbendazim and thiophanate-methyl were 0.3, 0.1, and 0.2 mg/kg/day, and long-term AOEL were 0.025, 0.025, 0.08 mg/kg/day, respectively. LADDs were benomyl 0.0038, carbendazim 0.0067, thiophanate-methyl 0.0081 mg/kg/day. The ratios of exposure to AOEL were $0.28{\sim}1.5$ for short-term and $3.73{\sim}9.88$ for long-term. Cancer risk for operator were $9.12{\times}10^{-6}$ for benomyl, $1.61{\times}10^{-5}$ for carbendazim and $1.13{\times}10^{-4}$ for thiophanate-methyl by the standard application scenario. The result showed 3 fungicides exceed the risk criteria, $1.0{\times}10^{-6}$. The above risk assessments were based upon conservative assumptions and therefore are believed to be protective of the applicator. To refine the risk at the more actual conditions, further risk assessment with more realistic data would be needed.

Fungicide Resistance of Gibberella fujikuroi Isolates Causing Rice Bakanae Disease and Their Progeny Isolates (벼키다리병균(Gibberella fujikuroi) 균주 및 교배 후대균주의 살균제에 대한 저항성)

  • Kim, Jung-Mi;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee;Yu, Seung-Hun;Choi, Hyo-Won
    • The Korean Journal of Mycology
    • /
    • v.38 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • A total of 25 isolates of Fusarium fujikuroi were obtained from diseased rice plants in Korea from 2006 to 2007 to assess their resistance against fungicides prochloraz and benomyl + thiram. Minimal inhibitory concentration (MIC) values of F. fujikuroi isolates were examined by agar dilution method. Most of the isolates were sensitive to the fungicides. Out of 25 isolates, six were resistant to prochloraz and three to benomyl + thiram. In addition, the isolates CF245, CF249 and CF337 showed resistant to both fungicides. The progenies ($F_1$ isolates) obtained through two different crosses between sensitive parental isolates(CF202, CF232 and CF179) and resistant parental isolate (CF337) were evaluated for their mycelial growth at different temperatures and resistance against fungicides. Mycelial growth rate of $F_1$ isolates originated from CF202 $\times$ CF232 was similar to the parental isolates. However mycelial growth rate of $F_1$ isolates originated from CF179 $\times$ CF337 was faster than their parent isolates. In case of prochloraz, distribution ratio of sensitivity(S) to resistance(R) against to the fungicide of $F_1$ isolates originated from CF202 $\times$ CF232 and CF179 $\times$ CF337 was 86 : 14 and 78 : 22, respectively. In case of benomyl+thiram, all the $F_1$ isolates originated from CF202 $\times$ CF232 were sensitive to the fungicide, however ratio of sensitivity(S) to resistance(R) against to the fungicide of $F_1$ isolates originated from CF179 $\times$ CF337 was 35 : 65.

Germination Characteristics of Medicinal Crop Adenophora triphylla var. japonica Hara as Affected by Seed Disinfection and Light Quality (종자 소독처리와 광질에 따른 약용작물 잔대 종자의 발아특성)

  • Lee, Hye Ri;Kim, Hyeon Min;Jeong, Hyeon Woo;Oh, Myung Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.404-410
    • /
    • 2019
  • This study was performed to investigate the seed morphological characteristics and dormancy type of Adenophora triphylla var. japonica Hara that high valued medicinal crop and to select the disinfectants and light quality for germination rate improvement. The seed disinfection was carried out using distilled water (control), NaClO 4%, $H_2O_2$ 4%, and benomyl $500mg{\cdot}L^{-1}$. The light quality treatments were set to dark condition (control I), fluorescent lamp (control II), LEDs [red, blue, green, and combined RB LEDs (red:blue = 8:2, 6:4, 4:6, 2:8)] with a photoperiod of 12/12 (light/dark) and light intensity $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density. Although the Adenophora triphylla var. japonica Hara seed was an underdeveloped embryo (E) and seed (S) with an embryo (E):seed (S) ratio of 0.4, it is germinated within 30 days, and seed moisture saturation was reached within 6 hours after immersion. After seed disinfection, the mold incidence rate was significantly inhibited, and the final germination rate was the highest at 87% in the benomyl seed disinfection. The final germination rate was the highest at 92% in the red light, and the mean daily germination was the lowest in the R2B8. Therefore, there is almost no dormancy in the Adenophora triphylla var. japonica Hara seed, and benomyl seed disinfectant and red light were effective in the improvement of germination rate. So it is considered to the high value of use for medicinal crop Adenophora triphylla var. japonica Hara cultivation.

Chemical Control of White and Violet Root Rot Caused by Rosellinia necatrix and Helicobasidium mompa on Apple Tree (사과나무 흰날개무늬병과 자주날개무늬병의 약제 방제)

  • 이상범;정봉구;김기홍;최용문
    • Plant Disease and Agriculture
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • This study was carried out to select effective fungicides against white and violet root rot caused by Rosellinia necatrix and Helicobasidium mompa with nine fungicides including thiophanate-methyl from 1993 to 1994. Through laboratory, greenhouse and field trials on inhibitory effect of mycelial growth and disease incidence against the two fungal pathogens, 5 fungicides have been selected finally. Thiopanate-methyl, benomyl, iminoctadine-triacetate and isoprothiolane were proven to have high control effect against R. necatrix. In addition to thiopanate-methyl and benomyl, tolclofos-methyl has been selected for effective control of H. mompa, since it showed prominent control effect in field trial than in laboratory or green house test.

  • PDF

Biological Characteristics of Benzimidazole-Resistant and-Senstive Isolates of Monilinia fructicola from Peach Fruits in Korea

  • Lim, Tae-Heon;Chang, Tae-Hyun;Byeongjin Cha
    • The Plant Pathology Journal
    • /
    • v.15 no.6
    • /
    • pp.340-344
    • /
    • 1999
  • Fungicide-resistant isolates of Monilinia fructicola grew readily on media amended with 0.1, 1.0, 10, 100 and $1,000\mu\textrm{g}$ a.i./ml of carendazim, benomyl, or thiophanate-methyl. However, sensitive isolates did not grow on media amended even with $0.1\mu\textrm{g}$ a.i./ml of carbendazim, $1.0\mu\textrm{g}$ a.i./ml of benomyl or thiophanate-methyl. The fitness compositions including mycelial growth on fungicide-free medium, sporulation on fungicide-free medium and pear, and virulence on pear were not different between resistant and sensitive isolates. The resistant isolates persisted carbendazim resistance during multiple subdulturing and long term storage. The competitive ability of resistant isolates obtained from peach orchards in Korea was similar to those of sensitive isolates.

  • PDF

Fungicide Resistance and Genetic Diversity of Botrytis cinerea of Citrus (감귤 잿빛곰팡이병균의 살균제에 대한 저항성 및 유전적 다양성)

  • 고영진;이재군;서정규;문두길;한해룡
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.682-688
    • /
    • 1998
  • Fungicide resistance of 48 isolates of Botrytis cinerea collected from citrus in Cheju was investigated and genetic diversity was analyzed with random amplified polymorphic DNA(RAPD). High levels of resistance to benzimidazole fungicides benomyl and thiophanate-methyl and N-phenylcarbamate fungicide diethofencarb were observed. Negative cross resistance was clear between benzimidazole and N-phenylcarbamate fungicides, and multiple resistance to the fungicides was also observed. There was cross resistance among the dicarboximide fungicides procymidione, vinclozolin and iprodione as it was observed between the benzimidazole fungicides benomyl and thiophanate-methyl. The lowest levels of resistance were to the dicarboximide fungicides, but no sensitive isolate to polyoxin B was observed. The isolates showed genetically diverse RAPD profiles according to the geographic origin collected, but there was no significant correaltion between RAPD profiles of genomic DNA and the levels of fungicide resistance of the isolates. The isolates showed genetically diverse RAPD profiles, indicating that genetic differentiation had already occurred in the populations of B. cinerea distributed in Cheju.

  • PDF

Chemical Control of Gray Mold in Scutellaria baicalensis Georg

  • Kwon, Byung-Sun;Shin, Dong-Young
    • Plant Resources
    • /
    • v.8 no.2
    • /
    • pp.130-134
    • /
    • 2005
  • This study was conducted to evaluate the control effect of fungicides on control of Gray mold, growth characteristics, and root yield in the cultivation of Scutellaria baicalensis after barley cropping. All fungicides treated had no effect on the growth and flowering rate of Scutellaria baicalensis. All seed disinfectants had no effect on the growth and flowering date of Scutellaria baicalensis Georg. The major seed disinfectants were Benomyl Wp, $20\%$, Captan Wp, $50\%$, Hymexazol Ec, $30\%$, Carboxin D, $37.5\%$. Dry root yield were increased largely with Benomyl Wp, $20\%$, seed disinfectant than the other seed disinfectants had no injury with standard dosage. On the other hand, all seed disinfectants had slight injury in the double dosage level for the Scutellaria baicalensis Georg.

  • PDF

Chemical Resistance of Diaporthe citri against Systemic Fungicides on Citrus

  • Zar Zar Soe;Yong Ho Shin;Hyun Su Kang;Yong Chull Jeun
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.351-360
    • /
    • 2023
  • Citrus melanose, caused by Diaporthe citri, has been one of the serious diseases, and chemical fungicides were used for protection in many citrus orchards of Jeju Island. Establishing a disinfectant resistance management system and reducing pesticide usage would be important for contributing to safe agricultural production. In this study, monitoring of chemical resistance was performed with 40 representative D. citri isolates from many citrus orchards in Jeju Island. Four different fungicides, kresoxim-methyl, benomyl, fluazinam, and prochloraz manganese, with seven different concentrations were tested in vitro by growing the mycelium of the fungal isolates on the artificial medium potato dextrose agar. Among the 40 fungal isolates, 12 isolates were investigated as resistant to kresoxim-methyl which could not inhibit the mycelium growth to more than 50%. Especially isolate NEL21-2 was also resistant against benomyl, whose hyphae grew well even on the highest chemical concentration. However, any chemical resistance of fungal isolates was found against neither fluazinam nor prochloraz manganese. On the other hand, in vivo bio-testing of some resistant isolates was performed against both kresoxim-methyl and benomyl on young citrus leaves. Typical melanose symptoms developed on the citrus leaves pre-treated with both agrochemicals after inoculation with the resistant isolates. However, no or less symptoms were observed when the susceptible isolates were inoculated. Based on these results, it was suggested that some resistant isolates of D. citri occurred against both systemic fungicides, which may be valuable to build a strategy for protecting citrus disease.