• 제목/요약/키워드: BEM method

검색결과 408건 처리시간 0.023초

승용연료전지 자동차용 블로워 케이스의 방사소음 저감을 위한 CAE 이용 구조변경에 관한 연구 (Structural Modification for Noise Reduction of the Blower Case in a Fuel Cell Passenger Car Based on the CAE Technology)

  • 송민근;이상권;서상훈
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.972-981
    • /
    • 2008
  • The blower which is installed in a FCEV(fuel cell electric vehicle) may cause noise due to misalignment and unbalance of mechanical components that rotate at high speed. One of the key points in efforts to minimize the noise radiation from a blower is the knowledge of the main radiating component and the relation between the surface vibration of a blower and the sound pressure. In this research, the blower model is developed based on FEM(finite element method). FE(finite element) model is reliable by correlation of frequencies and MAC(modal assurance criterion) values between EMA(experimental modal analysis) and FEA(finite element analysis). This model is applied to predict the vibration of a blower by using inverse force identification method and predict the radiating noise by using BEM(boundary element method). Comparing the frequencies of resonance and those mode shapes between EMA and FEA, a structural modification of the FE model is evaluated for reducing the parameters of the blower noise.

파워흐름유한요소법의 진동해석 결과를 이용한 구조물의 방사소음 해석시스템 개발 (Development of Sound Radiation Analysis System Using the Results of Power Flow Finite Element Method)

  • 이호원;홍석윤
    • 한국음향학회지
    • /
    • 제20권7호
    • /
    • pp.21-30
    • /
    • 2001
  • 중고주파수 대역에서 구조물의 진동해석에 사용되는 새로운 기법인 파워흐름유한요소법과 음향방사문제를 해결하는데 사용되는 음향경계요소법을 이용하여 구조물의 진동해석에서 방사소음해석까지 일련의 과정이 순차적으로 이루어지는 해석시스템을 구축하였다. 평판으로 이루어진 임의의 형상 구조물의 진동해석을 수행하고, 이 때 얻어지는 표면에서의 에너지밀도를 음향해석을 위한 속도경계조건으로 활용하여 진동-소음해석을 수행하였다. 개발된 진동-소음해석 시스템의 검증을 위해 간단한 형상의 구조물을 모델링하여 상용화 패키지(SYSNOISE)의 해석결과와 비교하였으며 또한 여러 다양한 형상의 구조물에 대해서도 본 해석시스템을 적용하여 진동-소음해석을 수행하였다.

  • PDF

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

수면부근에 설치된 이열고정부방파제에 의한 파랑제어의 해석 (Wave Control by Two-Rowed Fixed Floating Breakwaters near the Water Surface)

  • 김도삼;이재석;이봉재
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.1-7
    • /
    • 2001
  • Mainly, Floating Breakwaters (FBs) have been constructed in many coastal regions due to the advantages of the coastal environment and construction cost. In general, the FB becomes fixed or its width broadened because the movement of the FB comes to be large and its the wave control function lower for the long period incident waves. This study discusses the wave control function of two-rowed Fixed Floating Breakwater (FFBs) that have narrower width than that of the one-rowed FFB by using numerical approach. Boundary Element Method (BEM) based on the Green formula and Eigenfunction Expansion Method (EEM) are applied to evaluate the three-dimensional wave transformation near the wave fields of two-rowed FFBs. The validity of the present study is confirmed by comparing it with the results of Ijima et al. (1974) and Yoshida et al. (1992) for the one-rowed Fixed Floating Structure. It is revealed that the wave control function of two-rowed FFBs is more effective than that of the one-rowed FFB.

  • PDF

CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경 (Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology)

  • 송민근;오기석;이상권
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.

Hydroelastic Vibration Analysis of Structures in Contact with Fluid

  • Chung, Kie-Tae;Kim, Young-Bok;Kang, Ho-Seung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.18-28
    • /
    • 1994
  • In the vibration analysis of submerged or floating bodies such as ships and offshore structures, the coupled system between fluid and structure should be considered using the compatibility conditions on the wetted surface. It is well known that the hydroelastic vibration analysis of structures in contact with fluid can be done by applying the finite element method(FEM) to structures and the boundary element method(BEM) to the fluid domain. However, such an approach is impractical due to the characteristics of the fully coupled added mass matrix of fluid on the entire wetted surface. To overcome this difficulty, an efficient approach based on a reanalysis scheme is proposed in this paper. The proposed method can be applied for cases of higher local modes and beam-like modes for which three-dimensional reduction factors are not known. The three dimensional reduction factors are not needled and thus the restrictions can be removed in the analyses of non-beam like modes or local vibration modes by considering fluid-structure interaction. The validity and calculation efficiency of the proposed method are proved through numerical examples.

  • PDF

경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용 (A Boundary Method for Shape Design Sensitivity Analysis for Shape Optimization Problems and its Application)

  • 최주호;곽현구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.355-362
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in various problems. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem and fillet problem are chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in these problems.

  • PDF

상용 소프트웨어 ANSYS를 이용한 열전도문제의 형상설계 민감도 해석 (Shape Design Sensitivity Analysis of Thermal Conduction Problems using Commercial Software ANSYS)

  • 최주호
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.645-652
    • /
    • 2000
  • A method for shape design sensitivity analysis is proposed utilizing commercial software ANSYS for thermal conduction problems. While the sensitivity formula is derived analytically by introduing adjoint variable concept, sensitivity calculation in practice as well as the primal and adjoint solution of thermal conduction is performed using the ANSYS very easily. Since the formula always takes boundary integral form, sensitivity evaluation in ANSYS requires a little more addition of post-processing routine which involves evaluation of boundary variable from the obtained solution. Though the BEM has been used as a better tool for this purpose, the present study shows it can also be calculated using any kind of analysis code such as ANSYS since the formula is based on analytic nature. Therefore the present study provides a new and efficient way of optimization which was not possible before using commercial software. The usefulness of the method is illustrated via a weight minimization problem of thermal diffuser.

인공슬롯을 고려한 수압파쇄 균열의 발전양상에 관한 연구 (The Analysis of Fracture Propagation in Hydraulic Fracturing using Artificial Slot Model)

  • 최성웅;이희근
    • 터널과지하공간
    • /
    • 제5권3호
    • /
    • pp.251-265
    • /
    • 1995
  • One of the most important matters in stress measurement by hydraulic fracturing technique is the determination of the breakdown pressure, reopening pressure, and shut-in pressure, since these values are the basic input data for the calculation of the in-situ stress. The control of the fracture propagation is also important when the hydraulic fracturing technique is applied to the development of groundwater system, geothermal energy, oil, and natural gas. In this study, a laboratory scale hydraulic fracturing device was built and a series of model tests were conducted with cube blocks of Machon gabbro. A new method called 'flatjack method' was adopted to determine shut-in pressure. The initial stress calculated from the shut-in pressure measured by flatjack method showed much higher accuracy than the stress determined by the conventional method. The dependency of the direction of fracture propagation on the state of the initial stresses was measured by introducin g artificial slots in the borehole made by water jet system. Numerical modeling by BEM was also performed to simulate the fracture propagation process. Both results form numerical and laboratory tests showed good agreement. From this study which provides the extensive results on the determination of shut-in pressure and the control of fracture propagation which are the critical issue in the recent hydraulic fracturing, it is conclued that in-situ stress measurement and the control of fracture propagation could be achived more accurately.

  • PDF

가스 배관의 차단 주파수에 따른 음파전달특성 연구 (Acoustic Wave Propagation Characteristics Corresponding to the Cut-off Frequency in Gas Pipeline)

  • 김민수;이상권;장상엽;고재필
    • 한국소음진동공학회논문집
    • /
    • 제18권7호
    • /
    • pp.693-700
    • /
    • 2008
  • High-Pressure gas Pipeline which is buried in underground has the Possibility that will be exposed to unexpected dangerous impact of construction equipment. To protect from this kind of danger, the real-time health monitoring system of the high-pressure gas pipeline is necessary. First of all, to make the real-time health monitoring system clearly, the acoustic wave propagation characteristics which are made from various construction equipment impacts must be identified. In link of technical development that prevents the damage of high-pressure gas pipeline, this paper gives FEM(finite element method) and BEM(boundary element method) solutions to identify the acoustic wave propagation characteristic of the various impact input signals which consist of Direc delta function and convolution signal of 45 Hz square signal and random signal.