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Abstract

In the vibration analysis of submerged or floating bodies such as ships and offshore
structures, the coupled system between fluid and structure should be considered using
the compatibility conditions on the wetted surface.

1t is well known that the hydroelastic vibration analysis of structures in contact with
fluid can be done by applying the finite element method(FEM) to structures and the
boundary element method(BEM) to the fluid domain. However, such an approach is
impractical due to the characteristics of the fully coupled added mass matrix of fluid on
the entire wetted surface.

To overcome this difficulty, an efficient approach based on a reanalysis scheme is
proposed in this paper. The proposed method can be applied for cases of higher lo-
cal modes and beam-like modes for which three-dimensional reduction factors are not
known. The three dimensional reduction factors are not needed and thus the restric-
tions can be removed in the analyses of non-beam like modes or local vibration modes
by considering fluid-structure interaction. The validity and calculation efficiency of the
proposed method are proved through numerical examples.

1. INTRODUCTION

In the vibration analysis of ship structures, the decoupled analysis between fluid and
structure has been conventionally employed by applying two dimensional sectional added
mass multiplied by the predetermined three dimensional correction factors for the ellipsoid
of revolution or a finite cylinder with similar dimensions. In this conventional method, it is
assumed that the structures are in motion only with the global beam-like modes without any
sectional local modes and any non-beam like modes.

But in today’s weight optimized ship structures, it is common to find the non-beam
like modes of vibration such as the double bottom vibration or the local vibration in ships
with large openings. However, it is not easy to find the added mass and the corresponding
three dimensional reduction factors. In this case, thorough insight into the fluid-structure
interaction is needed to analyze the vibration of the structures in water, which leads to the
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conclusion that it is considered most reasonable to solve this problem by regarding the fluid
and the structure as one coupled system considering the compatibility conditions on the
wetted surface.

In general the motion of a structure is described by a set of algebraic equations by applying
the finite element discretization. Also the fluid can be analyzed using Lagrangian formulation
or Eulerian formulation according to the independent variables employed in describing fluid
motion[1]. In case of Lagrangian formulation, the fluid field can be idealized into the same
finite elements with the independent variables such as stresses and strains as in the case of the
structure. But it can be pointed out as disadvantages to require too large degrees of freedom
and to create some imaginary radiating boundaries for bounding the infinite fluid domain,
which are normal in the vibration analysis of ships and offshore structures.

The boundary element method in Eulerian formulation is based on the inverse formula-
tion of the weighted residual integrations of governing equations and boundary conditions.
Therefore, the degrees of freedom of the equilibrium equations can be restricted on the wetted
structural surface by applying the weighting function such as Green function, which satisfies
the remaining boundary conditions on free surface, sea bottom or radiating boundary, etc.
But in this case, apart from the case of finite element method, the algebraic equations is
fully coupled on the whole degrees of freedom on the wetted surface because of the Green
function employed. Therefore, if this shortcoming can be overcome, the vibration analysis by
finite/boundary element method will be very efficient and practical.

In this paper an efficient finite/boundary element method is proposed for the vibration
analysis of the ships and offshore structures considering the fluid-structure interaction, in
which the modal reanalysis scheme is used in order to overcome the above mentioned short-
coming of large coupled degrees of freedom originated from the Green function.

2. THE VIBRATION ANALYSIS OF A STRUCTURE IN WATER
2.1 Coupled Analysis of a Fluid-Structure Interaction

The equations of motion representing a fluid-structure interaction can be described as
follows:

MX+CX+KX=F+F' (1)

where M°, C, K are the mass, damping and stiffness matrix of the structure, respectively.
And F* and F* denote the pure external force and the force acting on the wetted structural
surface by the fluid-structure interaction, respectively. From above equation (1), it can be
said that the problem is to obtain F", which is dependent on the unknown displacements.
Assuming that the fluid is ideal, the tangential components of F* are negligible on the wetted
surface of the structure and F* can be described by integrating the pressure P on the wetted
surface S;, that is

i T-
Fi= /SiNnPdS (2)

where N is a shape function for approximation of the pressure on any surface element, P is
the pressure vector to be solved in the coupled fluid-structure system, and 7 is the unit normal
vector on the wetted surface into the fluid. To obtain the pressure P, there are two different
methods, Lagrangian and Eulerian methods depending on the independent variables in the



20 Hydroelastic Vibration Analysis of Structures in Contact with Fluid

fluid domain. The finite element method based on the weak formulation or the boundary
element method based on the inverse formulation can be used in Eulerian method. In this
study, as mentioned in the Introduction, the boundary element method is used in combination
with the modal reanalysis scheme. Following the procedure in [2], if the pressure P obtained
by BEM is substituted into the equation (2), the force F* can be obtained as a function of
acceleration of the structure, namely

F'=-MX (3)

where M/ is the added mass matrix. This matrix is asymmetric and fully coupled because the
shape function N for approximation and the Green function used for residual weighting are
different. However, as illustrated in 2], this asymmetry is rather weak and can be symmetrized
by using the energy conservation principle. Substituting equation (3) into the equation (1),
the equations of motion for the fluid-structure interaction problem can be formulated as
follows: ) .

(M + MHOX, + CyX; + KyX; = Ff, 4,5=1,2,--+,n (4)
where n is the total degrees of freedom of the structure.

Since the added mass matrix has very wide coupled bandwidth due to the coupled terms
with the whole degrees of freedom on the wetted surface, it is not economical to solve these
equations by using the general purpose structural analysis package program and furthermore
practically impossible to apply to the huge model such as a ship structure. Therefore, the
modal reanalysis method as illustrated in the Appendix is applied. The fluid-structure in-
teraction problem in the equation (4) can be solved using by substituting into the equation
(A.3) in Appendix the relations as follows:

Mi' = Mi;’»
§My = M, ij=12-n (5)
6C = 6K =0

Using the n; pairs of the natural frequency w and the natural modal function ¢ of the
structure in air, the modal equations of motion can be described as follows:

(Iuk + dir M bs1) 2 + 2w Zi + Wi 2 = i P, (6)
,J7=12---,n and k=1,2,---,ny

where ny is the number of modes considered. These equations have the same forms as the
equation (A.4). In case of ships, the structural damping is so small that the effect on the
natural vibration characteristics would be negligible. Therefore, after neglecting the damping
and the external forces, the natural frequencies w’s of the structure in water are obtained
from the equation (6), and the modal functions ¢'s from the equation (A.5). Hereafter, this
method is called the Coupled Reanalysis Method.

2.2 Decoupled Analysis of a Fluid-Structure Interaction

Two dimensional added mass m 2P of a structure in water with arbitary cross sections

and large slenderness ratio like ships, can be obtained by the Lewis mapping function[3], the
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close-fit-method of Frank[4] or the boundary element method|[2]. The added mass matrix M/
is obtained by distributing m2P on the wetted surface. Thus,

(7)

M= mf?P  (on the surface in water)
74_7 - . .
0 (on the surface in air)

Above results are limited to two dimensional behaviour of fluid along the girth of the section.
However, M/ should be reduced by some factor to take into account three dimensional flow
effect along the length. In the conventional ship vibration analysis, this effect has been
accounted for in terms of .J-—factors, the three dimensional correction factors, which are
derived theoretically for the ellipsoid of revolution or the finite cylinder[5,6,7,8]. Then, the
added mass matrix for the k—th vibration mode can be written as:

j\llij,k = 111 Jk H (8)
,7=1,2,---,n and k= 172,"'anf
The equations of motion of the structure in water are
(M3 + MM X, + CyX; + Ky X; = F, (9)
4,j=1,2,---,n and k=1,2,--,ng

It is clear that the equations of motion should be solved separately for each mode and the
orthogonality between each vibration mode can not be sustained, which makes it impractical
and time-consuming to solve these equations directly. Therefore, the following two methods,
the conventional Decoupled Reference-mode Method and the Decoupled Reanalysis Method,
are employed in practice[9)].

2.3 Decoupled Reference-mode Method

The equation (9) can be rewritten for an arbitrary reference mode among the ny modes
as follows:

(M3 + M{Jee) X + Ciy X; + Kij X; = F, (10)
i7j = 1,2,"',7’l

Solving these equations of motion, the other eigenpairs can be derived in terms of the reference

eigenpairs as follows:
My + Mydeer ref
EN M M (1)

¢ =03, i=1,2,--,n and j=1,2,--,ny (12)
Ms =3 M; (13)
My =3 M}

In equation (12), it is assumed that the change of the modal added mass has almost no
effect on the eigenmode shapes. It is to be noted that equation (10) can not be solved at one



22 Hydroelastic Vibration Analysis of Structures in Contact with Fluid

time, because the different reference mode must be used for each case of independent modes
as vertical or horizontal-tortional modes.

2.4 Decoupled Reanalysis Method

To overcome the above-mentioned difficulty, the Decoupled Reanalysis Method can be
used economically and accurately by considering the added masses multiplied by the three-
dimensional correction factors for every required mode simultaneously[9]. The three dimen-
sional correction factor is represented as the following diagonal matrix, namely

Jkk:']ky k=1,2,---,nf (14)

The following relations are substituted into the equation (A.3), to make use of the reanalysis
methods in the Appendix, that is

Mi‘ - Mzs]
—_ / L
6Mi' — Mij’ Z,] — 1,2,"',” (15)
0C = 6K =0

The equations of motion can be written as follows:
(Ml; + Mz{)X] + Cinj + Kinj = F}, (16)
iaj = 1a2""an
Here, it is remarkable that the M} in the above equations is estimated from the two dimen-
sional added mass. Substituting X; = ¢;;z; into equation (16), followed by premultiplying ¢

on both sides and using the ¢’s and w’s determined from the mode analysis for the structure
in air leads to

(Iuk + i Mida) 3k + 2Cwrie + wizk = duF, (17)
i=1,2,---,n and k=1,2,---,ny

where the second term in the parenthesis of equation (17) should be the added mass matrix
corresponding to the k—th mode. Thus, ’

(Ink + S ML i Jer) 5k + 20pwisn +wiz, = punFy, (18)
t=1,2,---,n and k=1,2,---,ng

From these equations, w’ and ¢’ of the structure in water can be deduced easily by use of
the reanalysis method. In comparison with the Decoupled Reference-mode Method, it is the
advantage that the vertical mode of vibration and the horizontal-torsional coupling mode
vibration can be analyzed simultaneously and the modal functions are orthogonal between
modes|[9], although this still requires the three dimensional reduction factors.

3. EXAMPLES AND RESULTS
3.1 Spring Mass System

Firstly, in order to investigate the effectiveness and accuracy of the reanalysis method,
the natural vibration analysis was carried out for the spring-concentrated mass system shown
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in Figure 1(a), by both the reanalysis method and the direct analysis method by increasing
M from 10 % to 100 % of the original structural mass. Figure 1(b) shows the results of the
above analyses from which the effectiveness and accuracy of the former can be confirmed.

ki

Wy

k}, ICQ, k3, k4 = 60, 80, 100, 20kg/m
my, M2, M3, My = 37 1727 lkg

(a) Modeling

a0
[Hz] ~—*— Reanalysis
3.5 ——=*— Direct Analysis
3.0
2.5+
¥4 20
154
104
05
0.0 . — : ;
0 20 40 60 80 too

(b) The variation of 4-th natural frequency

Figure 1: Spring-mass system

Secondly, the applicability of the reanalysis method to the vibration analysis of the struc-
ture in water is investigated. Since the added mass matrix deduced from BEM is fully coupled
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and its magnitude is larger than or of the same order with the original structural mass, the
numerical value of 6 M is taken as the following additional fully coupled mass matrix.

20 —-05 —-05 =05
-05 20 -05 -0.5
-05 -05 20 =05
-05 —-05 —-05 20

oM =

In Table 1, the natural frequencies by each method are summarized and compared. It is
shown that the results by the reanalysis method agree well with those by the direct analysis,
even for the fully coupled additional mass matrix 6 M.

Table 1: Comparison of natural frequencies by various analyses(in Hz)

Mode | Original Modified Structure
Structure | Reanalysis | Direct analysis

1 0.69766 0.61305 0.61305

2 1.25165 0.87372 0.87372

3 2.39007 1.40254 1.40254

4 2.93504 1.60264 1.60264

3.2 Semi-Submerged Cylindrical Shell Structures

As an example of the structural vibration in water, the vibration analysis for the semi-
submerged cylindrical shell as shown in Figure 2 was carried out. This model has dimensions
of length L = 18 m, diameter d = 2 m and shell thickness t = 0.001 m.

The Young’s modulus E and the material density p are 2.06E11 N/m? and 236950 kg/m?,
respectively. The circumferencial fluid density is 1000 kg/m3. As shown in Figure 2, the
external shell is modeled with 36 6-noded shell elements and the cross sections with the 8-
noded membrane elements whose nodes are connected to the outer-shell nodes. The natural
vibration analyses were performed by means of the three methods.

e Coupled Reanalysis Method
e Decoupled Reference-mode Method

e Decoupled Reanalysis Method

In Table 2, the natural frequencies calculated and the CPU times taken by a VAX 6210
computer are tabulated for comparison. The vibration modes are not very sensitive to the
mass variations and analysis methods. Only the representative vibration modes by the above
three methods are depicted in Figure 2. Here the abbreviations V', H,T and L mean vertical,
horizontal, torsional and longitudinal mode, respectively. And the subscript denotes the
number of vibration nodes. In conventional decoupled methods, the accuracy of the solutions
depends on the three dimensional factors of the vertical and horizontal modes. The J-factors



Kie-Tae Chung , Young-Bok Kim and Ho-Seung Kang 25

(d) L, mode (e) Sth-local mode (f) 6th-local mode

Figure 2: Some vibration modes of a floating structure by Coupled Reanalysis

Table 2: Comparison of frequency analysis results for a floating structure (in Hz)

Freq. in air Freq. in water
Mode fair fio’ | 5t 1 fip
H 7.39 6.604 | 6.727 | 6.524
vV 7.39 5.964 5848 | 5.718
T 15.88 15.88 | 15.88 | 15.88
vV 17.93 15.24 15.27 | 14.40
H 17.93 16.09 16.27 16.05
L 25.70 - - 23.24
H 30.56 20.61 | 27.93 | 27.52
|% 30.56 26.81 26.67 | 25.51
T 31.25 31.25 | 31.25 | 31.25
1% 43.67 38.63 | 37.67 | 35.54
H 43.67 39.59 | 40.00 | 39.35
1st-local 45.40 - - 43.36
T 45.61 45.61 | 45.61 | 45.61
2nd-local 45.67 - - 43.54
3rd-local 49.80 - - 46.24
4th-local 49.81 - - 47.27
L 50.16 - - 46.67
5th-local 51.31 - - 47.75
6th-local 51.96 - - 47.93
CPU time (sec.) 840.76 903.87 | 937.74 | 895.05

fair Natural frequencies in air
;};’ : Natural frequencies by Decoupled Reference-mode Method
fee . Natural frequencies by Decoupled Reanalysis Method
31};; :  Natural frequencies by Coupled Reanalysis Method

- :J-value not available
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estimated theoretically by Kumai[5,6] are used and furthermore the J-factor for the four noded
vertical mode is taken as reference in the Decoupled Reference-mode Method. In torsional
modes, there appears the inertia moment due to the difference between the horizontal centre
of the added mass and the structural shear center. Thus in the analysis of the horizontal and
torsional mode, the Ji of the corresponding mode should be considered. While the idealized
model by Kumai is a beam with a cylindrical section, in which case the theoretical approach
is easy, the adopted model in the present study is the shell structure which can be deformed
differently from the Kumai’s model. It must be noted that the results obtained by the present
model are affected by the fluid-structure interaction and those are dependent on the mesh sizes
employed as opposed to the Kumai’s model. From the analysis results, there is little or no
difference in the frequencies of the horizontal and torsional modes regardless of the analysis
methods. However, there is a slight difference in the frequencies of the vertical modes by
analysis methods used. The reason for no difference in torsional eigen frequencies between
modes in air and in water is that there is no coupling effect in the horizontal-torsional mode
due to the fact that the wetted cross section of this model is circular[8]. The slight deviation
in the frequencies of the vertical modes is due to the difference in the model itself and the
analysis methods employed.

4. CONCLUSION

The Coupled and Decoupled Reanalysis Methods are applied for the fluid-structure in-
teraction problem. The applicability and reliability of the reanalysis method are confirmed
through the numerical examples of a spring-concentrated mass system.

From the analyses of a semi-submerged cylindrical shell structure, it is shown that in the
Decoupled Reference-mode Method, independent vibration modes such as the vertical and
the horizontal-torsional modes should be analyzed separately, because the different reference
mode must be taken for each mode. On the other hand, all the vibration modes can be solved
simultaneously by the Decoupled Reanalysis Method using two dimensional added mass and
three dimensional correction factor matrix, although it is limited to the case of hull girder
vibration modes with known J factors only.

When compared with the conventional decoupled methods, the Coupled Reanalysis Method
proposed in this paper can handle the fluid-structure interaction problem very effectively with-
out introducing three dimensional reduction factors and regardless of the vibration modes.
Furthermore, from the practical point of view, it takes the CPU time only of the same order
with conventional decoupled methods.

The advanced approach will be presented in the future, in which free surface effects, side
wall effects and bottom effects for real ship are investigated and the calculated results are
compared with the measurements.
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Appendix A: The Reanalysis Method of the Dynamic Characteristics of Structural
Behavior

The equations of motion of an arbitrary structure by FEM are described as follows:
Minj+Cinj+Kinj=Fi, ,j=12,---,n (Al)

where M, C,K and F represent the structural mass, damping, stiffness matrix and the exter-
nal force vector, and 7 is the total structural degrees of freedom. Letting w and ¢ be the eigen
frequencies and the normalized modal functions from equation (A.1) by neglecting the struc-
tural damping, the structural displacement vector X can be transformed into a generalized
coordinate:

Xj=¢]-kzk, j=1,2,~~,n, and k=1,2,---,nf (A2)

where z; is the generalized coordinate of the k-th mode and ny is the number of modes
considered.
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In case of the additional structural modifications such as éM, §C and 6K, the modified
equations of motion can be written as follows:

(Mi; + 6M;)X; + (Cij + 6Cy) X, + (Kij + 6Ki)X; = F,  4,5=1,2,---,n  (A3)
Substituting equation (A.2) into equation (A.3) and premultiplying ¢T on both sides leads to
M2k + Gz + kzw = fr, Lk=1,2,--,nf (A.4)

where

mu = I + GadM;;dji, ,j=12,---,n
ar = 2Quwu + ¢abCijhi  (where, ¢;Cij0; = 2Guw;)
ke = wi+ ¢ubKi;ds,
Cx = k —th modal damping ratio,
fo = ¢ fi=dufi,
I = identity matrix
After solving the eigenvalues w’ and modal functions ¥ from the equation (A.4), the gen-

eralized coordinate z of the original structure can be transformed into 2’ for the modified
structure by using following equations.

R = \Ilkpz'p, k,pZ—‘ 1,2,---,nf (A5)

Substituting the equation (A.5) into the equation (A.2), the eigenvalues w’ and modal matrix
¢’ of modified structure can be obtained[10]. That is,

Xj = ¢jkq!kp2/p = ¢_/jpzlpa .7 = 1a2a RS 4 and kvp = 1a23 e, Ny (AG)



