• Title/Summary/Keyword: BEM analysis

Search Result 320, Processing Time 0.022 seconds

An Application of 2-D BEM with Laplace Transformation to Impact Crack Analysis (균열의 충격해석에 대한 Laplace 변환 2차원 경계요소법의 응용)

  • 조상봉;김태규;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.883-890
    • /
    • 1992
  • Analysis of dynamic or impact problems is very important in engineering fields such as airplanes and automobiles. In the present study, two-dimensional elastodynamic BEM program with Laplace transformation is developed to analyze dynamic or impact problems. Accuracy and efficiency of the BEM program are tested by making the comparision of impact analysis of some models with other's published results. The BEM developed is applied to the impact crack problem and the dynamic stress intensity factors of some impact cracks is obtained by the displacement extrapolation method. It is confirmed to be possible to analyze impact problems accurately with only a little elements in simple models. And also it is found to be careful to use the singular element usually using in static crack problems because that the elastodynamic fundamental solution usually using in static crack problems because that the elastodynamic fundamental solution has more sensitive singularity than the static fundamental solution and to determine the boundary conditions in dynamic problems.

The Analysis of Transmission Characteristics of Closed Structure with Internal Source Using FEM/BEM (유한.경계요소법을 이용한 내부음원을 갖는 닫힌 구조물의 차음 특성 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong;Seo, Yeung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.318-321
    • /
    • 2005
  • In vibro-acoustic analysis, the commercial CAE tools, such as SYSNOISE, is usually used to take into account of the coupled effects of fluid acoustics and structural vibration. The acoustic field can be solved by either FEM or BEM, while the vibration field is usually solved by FEM. The interior or exterior acoustic problems with the coupled effects of the structural boundary could be solved by the commercial tools. The commercial tools, however, could not solve the problems in case that both the interior and exterior acoustic field is coupled with the structural boundary. In this paper, a realistic method based on FEM/BEM coupling scheme is presented to analyze the acoustic radiation from the internal source in a chamber to external acoustic field through elastic structural boundary. Several numerical examples are implemented to validate the developed program.

  • PDF

A step-by-step approach in the time-domain BEM formulation for the scalar wave equation

  • Carrer, J.A.M.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.683-696
    • /
    • 2007
  • This article is concerned with the presentation of a time-domain BEM approach applied to the solution of the scalar wave equation for 2D problems. The basic idea is quite simple: the basic variables of the problem at time $t_n$ (potential and flux) are computed with the results related to the potential and to its time derivative at time $t_{n-1}$ playing the role of "initial conditions". This time-marching scheme needs the computation of the potential and its time derivative at all boundary nodes and internal points, as well as the entire discretization of the domain. The convolution integrals of the standard time-domain BEM formulation, however, are not computed; the matrices assembled, only at the initial time interval, are those related to the potential, flux and to the potential time derivative. Two examples are presented and discussed at the end of the article, in order to verify the accuracy and potentialities of the proposed formulation.

A BEM/RANS interactive method for predicting contra-rotating propeller performance

  • Su, Yiran;Kinnas, Spyros A.
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.329-344
    • /
    • 2017
  • This paper introduces a BEM/RANS interactive scheme to predict the contra-rotating propeller (CRP) performance. In this scheme, the forward propeller and the aft propeller are handled by two separate BEM models while the interactions between them are achieved by coupling them with a RANS solver. By using the body force field and mass source field to represent the propeller in the RANS model, the number of RANS cells and the number of required RANS iterations reduce significantly. The method provides an efficient way to predict the effective wake, the steady/unsteady propeller forces, etc. The BEM/RANS interactive scheme is first applied to a CRP in both an axisymmetric manner and a non-axisymmetric manner. Results are shown in good agreement with the experimental data in moderate to high advance ratios. It is proved that the difference between the axisymmetric scheme and the non-axisymmetric scheme mainly comes from the non-axisymmetric bodies. It is also found that the error is larger at lower advance ratios. Possible explanations are given. Finally, some additional cases are tested which justifies that the non-axisymmetric BEM/RANS scheme is able to handle a podded CRP working at given inclination angles.

Full-Frequency Band Acoustic Analysis of Sandwich Composite Structure Using FE-BEM and SEA Method (FE-BEM 및 SEA 해석 기법을 활용한 샌드위치 복합재 구조물의 전 주파수 대역 음향 해석)

  • Lee, Dae-Oen;Lee, Yoon-Kyu;Kim, Hong-Il;Kim, Jae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.422-428
    • /
    • 2018
  • Increase in use of lightweight structures, coupled with the increased acoustic loads resulting from larger and longer range guided missiles, has made missile more susceptible to failures caused by acoustic loads. Thus, accurate prediction of acoustic environment and the response is becoming ever more important for mission success. In this paper, the acoustic response of a sandwich composite skin structure to diffuse acoustic excitation is predicted over a broad frequency range. For the low frequency acoustic analysis, coupled FE-BEM method is used where the structure is modeled using FEM and the interior and exterior fluid is modeled using BEM. For the high frequency region, statistical energy analysis is applied. The predicted acoustic level inside the structure is compared with the result from acoustic test conducted in reverberation chamber, which shows very good agreement.

An Analysis of Intake System using BEM and 1-D Solution (경계 요소법과 평면파 이론을 이용한 흡기계 해석)

  • Lee, C.M.;Kwon, O.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • The application of the 4-pole parameter method with 1 - D theory is acceptable for intake system analysis. However, the limitaion appears during the analysis of complicated intake system since this method is developed based on the plane wave thoery. For the intake system analysis, the usage of BEM(Boundary Element Method) is introduced describing its disadvantage. To combine benefits of both method. a hybrid method is introduced. This hybrid method consists of the 4-pole parameter with I-D theory and BEM. The developed method is applied to an automobile intake system analysis to obtain the transmission loss.

  • PDF

An Analysis of the Sound Stopband in Periodically Corrugated 2-D Ducts (반복 주름을 갖는 이차원 덕트의 음파차단 해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • In this paper, the occurrence of a stopband phenomenon when an acoustic wave propagates through periodically corrugated ducts is discussed using theoretical and BEM analyses. A 2-D duct with sinusoidally corrugated upper and lower walls is considered. When the magnitude of the sinusoidal corrugation is sufficiently small compared to the duct's height, the wave equation is solved with the multiple scaling perturbation method. Then stopbands for Bragg and non-Bragg resonances are computed from the condition where frequency becomes a complex number. A 2-D BEM analysis is performed to compute insertion loss of the duct, and stopbands are confirmed as predicted by analytical analysis.

Development of RecurDyn Module for Wind Turbine Analysis Applying BEM Theory (BEM 이론을 적용한 풍력발전기 해석용 RecurDyn 모듈 개발)

  • Lim, Dae Guen;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • In this study, a module is developed for modeling and analyzing dynamic behavior of a wind turbine using RecurDyn, which is a commercial multi-body dynamics software developed by FunctionBay, Inc. The wind turbine consists of tower, nacelle, hub and blades. Tower and blades are regarded as flexible bodies for considering elastic effect using beam theory and spring force. In this paper, a constant speed wind was assumed and aerodynamic force is modeled using BEM theory. Dynamic analysis applying this aerodynamic force is carried out. To verify the validity of analysis results, these results are compared to those of GH-Bladed which is a commercial software for analyzing wind turbine system distributed by Garrad Hassan.

Analysis of Crack Behavior of dissimilar materials in Brazed Interface By BEM (이종재 브레이징 계면에서의 균열거동해석)

  • 오환섭;김시현;김성재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.269-274
    • /
    • 2001
  • Applications of Brazing in the studying fields such as High-Speed Machining are very increasing in various industry fields. Therefore, Applying to the fracture mechanics by numerical analysis method is very important to analyse the crack problem Dissimilar Materials in Brazed Interface. In this study, Stress intensity Factor (S.I.F) is analysed to investigate crack behavior on the crack tip of dissimilar materials in brazed interface such as a Hardmetal and a HSS by two dimensional(2-D) Boundary Element Method (BEM). Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine Stress Intensity Factor.

  • PDF

A Comparative study of Finite Element Method and Boundary Element Method Analysis result of Cantilever Beam model by applying Orthotropic Material Properties (직교 이방성 재료 물성이 적용된 cantilever beam 형상의 FEM과 BEM에 의한 해석 결과에 대한 비교 연구)

  • Kim, Dong-Eun;Hwang, Young-Jin;Lee, Seok-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.730-735
    • /
    • 2007
  • This study is a comparison of the results of the orthropic material analysis at cantilever beam model using boundary element(BEM) method and finite element method(FEM). The program with the orthotropic material analysis was developed and applied to the examples in order to evaluate the accuracy of the programs. The examples shows that the results of the BEM is a good agreement with the ABAQUS results.

  • PDF