• Title/Summary/Keyword: BCR-ABL1

Search Result 22, Processing Time 0.025 seconds

Multiplex RT-PCR Assay for Detection of Common Fusion Transcripts in Acute Lymphoblastic Leukemia and Chronic Myeloid Leukemia Cases

  • Limsuwanachot, Nittaya;Siriboonpiputtana, Teerapong;Karntisawiwat, Kanlaya;Chareonsirisuthigul, Takol;Chuncharunee, Suporn;Rerkamnuaychoke, Budsaba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.677-684
    • /
    • 2016
  • Background: Acute lymphoblastic leukemia (ALL) is a heterogeneous disease which requires a risk-stratified approach for appropriate treatment. Specific chromosomal translocations within leukemic blasts are important prognostic factors that allow identification of relevant subgroups. In this study, we developed a multiplex RT-PCR assay for detection of the 4 most frequent translocations in ALL (BCR-ABL, TEL-AML1, MLL-AF4, and E2A-PBX1). Materials and Methods: A total of 214 diagnosed ALL samples from both adult and pediatric ALL and 14 cases of CML patients (154 bone marrow and 74 peripheral blood samples) were assessed for specific chromosomal translocations by cytogenetic and multiplex RT-PCR assays. Results: The results showed that 46 cases of ALL and CML (20.2%) contained the fusion transcripts. Within the positive ALL patients, the most prevalent cryptic translocation observed was mBCR-ABL (p190) at 8.41%. In addition, other genetic rearrangements detected by the multiplex PCR were 4.21% TEL-AML1 and 2.34% E2A-PBX1, whereas MLL-AF4 exhibited negative results in all tested samples. Moreover, MBCR-ABL was detected in all 14 CML samples. In 16 samples of normal karyotype ALL (n=9), ALL with no cytogentic result (n=4) and CML with no Philadelphia chromosome (n=3), fusion transcripts were detected. Conclusions: Multiplex RT-PCR provides a rapid, simple and highly sensitive method to detect fusion transcripts for prognostic and risk stratification of ALL and CML patients.

Growth Inhibitory and Pro-Apoptotic Effects of Hirsuteine in Chronic Myeloid Leukemia Cells through Targeting Sphingosine Kinase 1

  • Gao, Shan;Guo, Tingting;Luo, Shuyu;Zhang, Yan;Ren, Zehao;Lang, Xiaona;Hu, Gaoyong;Zuo, Duo;Jia, Wenqing;Kong, Dexin;Yu, Haiyang;Qiu, Yuling
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.553-561
    • /
    • 2022
  • Chronic myeloid leukemia (CML) is a slowly progressing hematopoietic cell disorder. Sphingosine kinase 1 (SPHK1) plays established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers, including leukemia. However, small-molecule inhibitors targeting SPHK1 in CML still need to be developed. This study revealed the role of SPHK1 in CML and investigated the potential anti-leukemic activity of hirsuteine (HST), an indole alkaloid obtained from the oriental plant Uncaria rhynchophylla, in CML cells. These results suggest that SPHK1 is highly expressed in CML cells and that overexpression of SPHK1 represents poor clinical outcomes in CML patients. HST exposure led to G2/M phase arrest, cellular apoptosis, and downregulation of Cyclin B1 and CDC2 and cleavage of Caspase 3 and PARP in CML cells. HST shifted sphingolipid rheostat from sphingosine 1-phosphate (S1P) towards the ceramide coupled with a marked inhibition of SPHK1. Mechanistically, HST significantly blocked SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways. In addition, HST can be docked with residues of SPHK1 and shifts the SPHK1 melting curve, indicating the potential protein-ligand interactions between SPHK1 and HST in both CML cells. SPHK1 overexpression impaired apoptosis and proliferation of CML cells induced by HST alone. These results suggest that HST, which may serve as a novel and specific SPHK1 inhibitor, exerts anti-leukemic activity by inhibiting the SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways in CML cells, thus conferring HST as a promising anti-leukemic drug for CML therapy in the future.

Selective miRNA Expression Profile in Chronic Myeloid Leukemia K562 Cell-derived Exosomes

  • Feng, Dan-Qin;Huang, Bo;Li, Jing;Liu, Jing;Chen, Xi-Min;Xu, Yan-Mei;Chen, Xin;Zhang, Hai-Bin;Hu, Long-Hua;Wang, Xiao-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7501-7508
    • /
    • 2013
  • Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder of hematopoietic stem cell scarrying the Philadelphia (Ph) chromosome and an oncogenic BCR-ABL1 fusion gene. The tyrosine kinase inhibitor (TKI) of BCR-ABL1 kinase is a treatment of choice for control of CML. Objective: Recent studies have demonstrated that miRNAs within exosomes from cancer cells play crucial roles in initiation and progression. This study was performed to assess miRNAs within exosomes of K562 cells. Methods: miRNA microarray analysis of K562 cells and K562 cell-derived exosomes was conducted with the 6th generation miRCURYTM LNA Array (v.16.0). Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also carried out. GO terms and signaling pathways were categorized into 66 classes (including homophilic cell adhesion, negative regulation of apoptotic process, cell adhesion) and 26 signaling pathways (such as Wnt). Results: In exosomes, 49 miRNAs were up regulated as compared to K562 cells, and two of them were further confirmed by quantitative real-time PCR. There are differentially expressed miRNAs between K562 cell derived-exosomes and K562 cells. Conclusion: Selectively expressed miRNAs in exosomes may promote the development of CML via effects on interactions (e.g. adhesion) of CML cells with their microenvironment.

Prognostically Significant Fusion Oncogenes in Pakistani Patients with Adult Acute Lymphoblastic Leukemia and their Association with Disease Biology and Outcome

  • Sabir, Noreen;Iqbal, Zafar;Aleem, Aamer;Awan, Tashfeen;Naeem, Tahir;Asad, Sultan;Tahir, Ammara H;Absar, Muhammad;Hasanato, Rana MW;Basit, Sulman;Chishti, Muhammad Azhar;Ul-Haque, Muhammad Faiyaz;Khalid, Ahmad Muktar;Sabar, Muhammad Farooq;Rasool, Mahmood;Karim, Sajjad;Khan, Mahwish;Samreen, Baila;Akram, Afia M;Siddiqi, Muhammad Hassan;Shahzadi, Saba;Shahbaz, Sana;Ali, Agha Shabbir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3349-3355
    • /
    • 2012
  • Background and objectives: Chromosomal abnormalities play an important role in genesis of acute lymphoblastic leukemia (ALL) and have prognostic implications. Five major risk stratifying fusion genes in ALL are BCR-ABL, MLL-AF4, ETV6-RUNX11, E2A-PBX1 and SIL-TAL1. This work aimed to detect common chromosomal translocations and associated fusion oncogenes in adult ALL patients and study their relationship with clinical features and treatment outcome. Methods: We studied fusion oncogenes in 104 adult ALL patients using RT-PCR and interphase-FISH at diagnosis and their association with clinical characteristics and treatment outcome. Results: Five most common fusion genes i.e. BCR-ABL (t 9; 22), TCF3-PBX1 (t 1; 19), ETV6-RUNX1 (t 12; 21), MLL-AF4 (t 4; 11) and SIL-TAL1 (Del 1p32) were found in 82/104 (79%) patients. TCF3-PBX1 fusion gene was associated with lymphadenopathy, SIL-TAL1 positive patients had frequent organomegaly and usually presented with a platelets count of less than $50{\times}10^9/l$. Survival of patients with fusion gene ETV6-RUNX1 was better when compared to patients harboring other genes. MLL-AF4 and BCR-ABL positivity characterized a subset of adult ALL patients with aggressive clinical behaviour and a poor outcome. Conclusions: This is the first study from Pakistan which investigated the frequency of5 fusion oncogenes in adult ALL patients, and their association with clinical features, treatment response and outcome. Frequencies of some of the oncogenes were different from those reported elsewhere and they appear to be associated with distinct clinical characteristics and treatment outcome. This information will help in the prognostic stratification and risk adapted management of adult ALL patients.

Negative Regulation of Erythroid Differentiation via the CBX8-TRIM28 Axis

  • Kim, Hyun Jeong;Park, Jin Woo;Kang, Joo-Young;Seo, Sang-Beom
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.444-457
    • /
    • 2021
  • Although the mechanism of chronic myeloid leukemia (CML) initiation through BCR/ABL oncogene has been well characterized, CML cell differentiation into erythroid lineage cells remains poorly understood. Using CRISPR-Cas9 screening, we identify Chromobox 8 (CBX8) as a negative regulator of K562 cell differentiation into erythrocytes. CBX8 is degraded via proteasomal pathway during K562 cell differentiation, which activates the expression of erythroid differentiation-related genes that are repressed by CBX8 in the complex of PRC1. During the differentiation process, the serine/threonine-protein kinase PIM1 phosphorylates serine 196 on CBX8, which contributes to CBX8 reduction. When CD235A expression levels are analyzed, the result reveals that the knockdown of PIM1 inhibits K562 cell differentiation. We also identify TRIM28 as another interaction partner of CBX8 by proteomic analysis. Intriguingly, TRIM28 maintains protein stability of CBX8 and TRIM28 loss significantly induces proteasomal degradation of CBX8, resulting in an acceleration of erythroid differentiation. Here, we demonstrate the involvement of the CBX8-TRIM28 axis during CML cell differentiation, suggesting that CBX8 and TRIM28 are promising novel targets for CML research.

Importance of FISH combined with Morphology, Immunophenotype and Cytogenetic Analysis of Childhood/Adult Acute Lymphoblastic Leukemia in Omani Patients

  • Goud, Tadakal Mallana;Al Salmani, Kamla Khalfan;Al Harasi, Salma Mohammed;Al Musalhi, Muhanna;Wasifuddin, Shah Mohammed;Rajab, Anna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7343-7350
    • /
    • 2015
  • Genetic changes associated with acute lymphoblastic leukemia (ALL) provide very important diagnostic and prognostic information with a direct impact on patient management. Detection of chromosome abnormalities by conventional cytogenetics combined with fluorescence in situ hybridization (FISH) play a very significant role in assessing risk stratification. Identification of specific chromosome abnormalities has led to the recognition of genetic subgroups based on reciprocal translocations, deletions and modal number in B or T-cell ALL. In the last twelve years 102 newly diagnosed childhood/adult ALL bone marrow samples were analysed for chromosomal abnormalities with conventional G-banding, and FISH (selected cases) using specific probes in our hospital. G-banded karyotype analysis found clonal numerical and/or structural chromosomal aberrations in 74.2% of cases. Patients with pseudodiploidy represented the most frequent group (38.7%) followed by high hyperdiploidy group (12.9%), low hyperdiploidy group (9.7%), hypodiploidy (<46) group (9.7%) and high hypertriploidy group (3.2%). The highest observed numerical chromosomal alteration was high hyperdiploidy (12.9%) with abnormal karyotypes while abnormal 12p (7.5%) was the highest observed structural abnormality followed by t(12;21)(p13.3;q22) resulting in ETV6/RUNX1 fusion (5.4%) and t(9;22)(q34.1;q11.2) resulting in BCR/ABL1 fusion (4.3%). Interestingly, we identified 16 cases with rare and complex structural aberrations. Application of the FISH technique produced major improvements in the sensitivity and accuracy of cytogenetic analysis with ALL patients. In conclusion it confirmed heterogeneity of ALL by identifying various recurrent chromosomal aberrations along with non-specific rearrangements and their association with specific immunophenotypes. This study pool is representative of paediatric/adult ALL patients in Oman.

Apoptosis Induction in MV4-11 and K562 Human Leukemic Cells by Pereskia sacharosa (Cactaceae) Leaf Crude Extract

  • Asmaa, Mat Jusoh Siti;Al-Jamal, Hamid Ali Nagi;Ang, Cheng Yong;Asan, Jamaruddin Mat;Seeni, Azman;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.475-481
    • /
    • 2014
  • Background: Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Materials and Methods: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. $IC_{50}$ concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. Results: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. Conclusions: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

Presence of Leukemia-maintaining Cells in Differentiation-resistant Fraction of K562 Chronic Myelogenous Leukemia (만성 골수성 백혈병 K562세포의 분화 내성 분획에서 백혈병 유지 세포의 동정)

  • Lee, Hong-Rae;Kim, Mi-Ju;Ha, Gahee;Kim, So-Jung;Kim, Sun-Hee;Kang, Chi-Dug
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • The present study investigated whether leukemia-maintaining cells reside in a differentiation-resistant fraction using a megakaryocytic differentiation model of K562 cells. Treatment with phorbol-12-myristate-13-acetate (PMA) significantly inhibited the colony-forming efficiency of the K562 cells. At a PMA concentration of 1 nM or higher, colony was not formed, but approximately 40% of K562 cells still survived in soft agar. Approximately 70% of colony-forming cells that were isolated following the removal of PMA after exposure to the agent were differentiated after treatment with 10 nM PMA for 3 days. The differentiation rate of the colony-forming cells was gradually increased and reached about 90% 6 weeks after colony isolation, which was comparable to the level of a PMA-treated K562 control. Meanwhile, imatinib-resistant variants from the K562 cells, including K562/R1, K562/R2, and K562/R3 cells, did not show any colony-forming activity, and most imatinib-resistant variants were CD44 positive. After 4 months of culture in drug-free medium, the surface level of CD44 was decreased in comparison with primary imatinib-resistant variants, and a few colonies were formed from K562/R3 cells. In these cells, Bcr-Abl, which was lost in the imatinib-resistant variants, was re-expressed, and the original phenotypes of the K562 cells were partially recovered. These results suggest that leukemia-maintaining cells might reside in a differentiation-resistant population. Differentiation therapy to eliminate leukemia-maintaining cells could be a successful treatment for leukemia if the leukemia-maintaining cells were exposed to a differentiation inducer for a long time and at a high dose.

Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype?

  • Ahmed, Rifat Zubair;Rashid, Munazza;Ahmed, Nuzhat;Nadeem, Muhammad;Shamsi, Tahir Sultan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.923-926
    • /
    • 2016
  • The classic BCR-ABL1-negative myeloproliferative neoplasm is an operational sub-category of MPNs that includes polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2V617F mutation is found in ~ 95% of PV and 50-60% of ET or PMF. In most of the remaining JAK2V617F-negative PV cases, JAK2 exon 12 mutations are present. Amongst the JAK2V617F-negative ET or PMF 5-10% of patients carry mutations in the MPL gene. Prior to 2013, there was no specific molecular marker described in the remaining 30-40% ET and PMF. In December 2013, two research groups independently reported mutations in the gene CALR found specifically in ET (67-71%) and PMF (56-88%) but not in PV. Initially CALR mutations were reported mutually exclusive with JAK2 or MPL. However, co-occurrence of CALR mutations with JAK2V617F has been reported recently in a few MPN cases. Many studies have reported important diagnostic and prognostic significance of CALR mutations in ET and PMF patients and CALR mutation screening has been proposed to be incorporated into WHO diagnostic criteria for MPN. It is suggestive in diagnostic workup of MPN that CALR mutations should not be studied in MPN patients who carry JAK2 or MPL mutations. However JAK2V617F and CALR positive patients might have a different phenotype and clinical course, distinct from the JAK2-positive or CALR-positive subgroups and identification of the true frequency of these patients may be an important factor for defining the prognosis, risk factors and outcomes for MPN patients.

A Case of Imatinib-mesylate associated Hypersensitivity Pneumonitis (Imatinib-mesylate에 의한 과민성 폐렴 1예)

  • Lee, Jae Wong;Kim, Hye Jin;Kim, Kyu Jin;Shin, Kyeong Cheol;Hong, Yeong Hoon;Chung, Jin Hong;Lee, Kwan Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.4
    • /
    • pp.423-426
    • /
    • 2005
  • Imatinib-mesylate (Gleevec, Glivec) is a protein-tyrosine kinase inhibitor that inhibits the Bcr-Abl tyrosine kinase created by the Philadelphia chromosome abnormality in CML. Imatinib is also used to treat patients with c-kit (CD 117)-positive unresectable tumors, or metastatic malignant gastrointestinal stromal tumors, or both. Imatinib is a welltolerated drug with few side effects. However, it has been associated with gastrointestinal irritation, fluid retention and edema, skin rashes, depigmentation, hepatotoxicity, hemorrhage, and hematological toxicity (anemia, neutropenia, and thrombocytopenia). In addition, imatinib has been associated with dyspnea and cough, which are mainly secondary to the pleural effusion and pulmonary edema, which represent local or general fluid retention. These events appear to be dose related and are more common encountered in the elderly. However, there has been no report of hypersensitivity pneumonitis associated with imatinib-mesylate in Korea. We report a case of 51-year old woman who developed hypersensitivity pneumonitis that might have been induced by imatinib-mesylate during the treatment of a gastrointestinal stromal tumor.