• Title/Summary/Keyword: BC200 RNA

Search Result 6, Processing Time 0.018 seconds

Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Ohn, Takbum;Lee, Younghoon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.318-322
    • /
    • 2017
  • Brain cytoplasmic 200 RNA (BC200 RNA) is a neuron-specific non-coding RNA, implicated in the inhibition of local synaptodendritic protein synthesis, and is highly expressed in some cancer cells. Although BC200 RNA has been shown to inhibit translation in vitro, the cellular location of this inhibition is unknown. In this study, we used a BC200 RNA-recognizing antibody to identify the cellular locations of BC200 RNA in HeLa cervical carcinoma cells. We observed punctate signals in both the cytoplasm and nucleus, and further discovered that BC200 RNA co-localized with the p-body decapping enzyme, DCP1A, and the heterogeneous nuclear ribonucleoprotein E2 (hnRNP E2). The latter is a known BC200 RNA-binding partner protein and a constituent of p-bodies. This suggests that BC200 RNA is localized to p-bodies via hnRNP E2.

Heterogeneous Sequences of Brain Cytoplasmic 200 RNA Formed by Multiple Adenine Nucleotide Insertions

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.495-500
    • /
    • 2019
  • Brain cytoplasmic 200 RNA (BC200 RNA), originally identified as a neuron-specific non-coding RNA, is also observed in various cancer cells that originate from non-neural cells. Studies have revealed diverse functions of BC200 RNA in cancer cells. Accordingly, we hypothesized that BC200 RNA might be modified in cancer cells to generate cancerous BC200 RNA responsible for its cancer-specific functions. Here, we report that BC200 RNA sequences are highly heterogeneous in cancer cells by virtue of multiple adenine nucleotide insertions in the internal A-rich region. The insertion of adenine nucleotides enhances BC200 RNA-mediated translation inhibition, possibly by increasing the binding affinity of BC200 RNA for eIF4A (eukaryotic translation initiation factor 4A).

Functional analysis of RNA motifs essential for BC200 RNA-mediated translational regulation

  • Jang, Seonghui;Shin, Heegwon;Lee, Younghoon
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.94-99
    • /
    • 2020
  • Brain cytoplasmic 200 RNA (BC200 RNA) is proposed to act as a local translational modulator by inhibiting translation after being targeted to neuronal dendrites. However, the mechanism by which BC200 RNA inhibits translation is not fully understood. Although a detailed functional analysis of RNA motifs is essential for understanding the BC200 RNA-mediated translation-inhibition mechanism, there is little relevant research on the subject. Here, we performed a systematic domain-dissection analysis of BC200 RNA to identify functional RNA motifs responsible for its translational-inhibition activity. Various RNA variants were assayed for their ability to inhibit translation of luciferase mRNA in vitro. We found that the 111-200-nucleotide region consisting of part of the Alu domain as well as the A/C-rich domain (consisting of both the A-rich and C-rich domains) is most effective for translation inhibition. Surprisingly, we also found that individual A-rich, A/C-rich, and Alu domains can enhance translation but at different levels for each domain, and that these enhancing effects manifest as cap-dependent translation.

BC200 RNA: An Emerging Therapeutic Target and Diagnostic Marker for Human Cancer

  • Shin, Heegwon;Kim, Youngmi;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.993-999
    • /
    • 2018
  • One of the most interesting findings from genome-wide expression analysis is that a considerable amount of noncoding RNA (ncRNA) is present in the cell. Recent studies have identified diverse biological functions of ncRNAs, which are expressed in a much wider array of forms than proteins. Certain ncRNAs associated with diseases, in particular, have attracted research attention as novel therapeutic targets and diagnostic markers. BC200 RNA, a 200-nucleotide ncRNA originally identified as a neuron-specific transcript, is abnormally over-expressed in several types of cancer tissue. A number of recent studies have suggested mechanisms by which abnormal expression of BC200 RNA contributes to the development of cancer. In this article, we first provide a brief review of a recent progress in identifying functions of BC200 RNA in cancer cells, and then offer examples of other ncRNAs as new therapeutic targets and diagnostic markers for human cancer. Finally, we discuss future directions of studies on BC200 RNA for new cancer treatments.

Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

  • Rahimi-Midani, Aryan;Kim, Kyoung-Ho;Lee, Seon-Woo;Jung, Sang Bong;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.584-588
    • /
    • 2016
  • Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of $100{\pm}5nm$ and tail of $200{\pm}5nm$, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene). Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

Identification of Differentially Expressed Genes in Human Small Cell Lung Carcinoma Using Subtractive Hybridization

  • Ahn Seung-Ju;Choi Jae-Kyoung;Joo Young Mi;Lee Min-A;Choi Pyung-Rak;Lee Yeong-Mi;Kim Myong-Shin;Kim So-Young;Jeon Eun-Hee;Min Byung-In;Kim Chong-Rak
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 2004
  • Lung cancer is a leading cause of cancer death worldwide; however, despite major advances in cancer treatment during the past two decades, the prognostic outcome of lung cancer patients has improved only minimally. This is largely due to the inadequacy of the traditional screening approach of diagnosis in lung cancer, which detects only well­established overt cancers and fails to identify precursor lesions in premalignant conditions of the bronchial tree. In recent years this situation has fundamentally changed with the identification of molecular abnormalities characteristic of premalignant changes; these concern tumour suppressor genes, loss of heterozygosity at crucial sites and activation of oncogenes. Basic knowledge at the molecular level has extremely important clinical implications with regard to early diagnosis, risk assessment and prevention, and therapeutic targets. In this study we used a 'cap-finder' subtractive hybridization method, 'long distance' polymerase chain reaction (PCR), streptavidin magnetic beads mediated subtraction, and spin column chromatography to detect differential expression genes of human small cell lung carcinoma. We have now isolated ninety two genes that expressed differentially in the human small cell lung carcinoma cells and analyzed of 12 clones with sequencing, nine cDNAs include tapasin (NGS-17) mRNA, BC200 alpha scRNA, chromosome 12q24 PAC RPCI3-462E2, protein phosphatase 1 (PPPICA), translocation protein 1 (TLOC1), ribosomal protein S24 (RPS24) mRNA, protein phosphatase (PPEF2), cathepsin Z, MDM2 gene and three novel genes. They may be oncogenesis­related proteins.

  • PDF