• Title/Summary/Keyword: BAX and BCL-2 expression

Search Result 654, Processing Time 0.032 seconds

induction of Apoptosis in Human Cancer Cells with Compositae Extracts (국화과 추출물의 암세포 증식 억제 효과)

  • An, In-Jung;Kwon, Jung-Ki;Lee, Jin-Seok;Park, Ha-Seung;Kim, Dong-Chan;Choi, Byung-Jun;Lee, Kyu-Min;Park, Youg-Jin;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.584-590
    • /
    • 2012
  • Dried $Compositae$ flowers have traditionally been used for the treatment of anti-inflammatory and anti-oxidative stress in Korea. This paper investigates the effects of $Compositae$ extracts on the inhibition of proliferation and apoptosis of human gastric cancer AGS cells, human breast cancer MDA-MB-231 cells, and SK-BR-3 cells. The proliferation of AGS cells, MDA-MB-231 cells, and SK-BR-3 cells were determined by MTT assay. Several $Compositae$ extracts inhibited proliferation of AGS cells, MDA-MB-231 cells, and SK-BR-3 cells in a dose-dependent manner. To assess the apoptosis of $Compositae$ extracts, the nuclei of MDA-MB-231 cells were stained with DAPI. The presence of chromatin condensation in the $Compositae$ extract-treated cells was detected on a fluorescent microscope (${\times}200$). We conducted Western blot analysis of changes in Bcl-2, Bax, and p53 protein expression levels. Apoptosis by $Chrysanthemum$ $zawadskii$ subsp. coreanum, $Chrysanthemum$ $zawadskii$ var. $tenuisectum$ and $Rudbeckia$ $laciniata$ var. $hortensis$ treatment created a decrease in Bcl-2 expression, whereas the expression of Bax and p53 were increased. These results indicate that $Chrysanthemum$ $zawadskii$ $subsp.$ $coreanum$, $Chrysanthemum$ $zawadskii$ var. $tenuisectum$ and $Rudbeckia$ $laciniata$ var. $hortensis$ inhibit breast cancer cell growth through the induction of apoptosis.

Protective Effects of Omija-tang on $H_2O_2$-induced apoptotic death of H9c2 cardiomyoblast cells (오미자탕(五味子湯)이 심근세포에 미치는 영향)

  • Han, Myoung-Ah;Choi, Woo-Jung;Kim, Dong-Woung;Jung, Dae-Young;Shin, Sun-Ho;Choi, Jin-Young
    • The Journal of Internal Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.181-190
    • /
    • 2002
  • The water extract of Omija-tang(OMJT) has been traditionally used for treatment of ischemic heart and brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of OMJT protects cells from such damage. Therefore, this study was conducted to investigate the protective mechanisms of OMJT on $H_2O_2$-induced toxicity in H9c2 cardiomyoblast cells. Treatment of $H_2O_2$ markedly induced death of H9c2 cardiomyoblast cells in a dose-dependent manner. The characteristics of $H_2O_2$-induced death of H9c2 showed apparent apoptotic features, such as DNA fragmentation. However, OMJT significantly reduced both $H_2O_2$-induced cell death and chromatin fragmentation. The decrease of Bcl-XL expression by $H_2O_2$ was inhibited by OMJT. In addition, the increase of Bcl-XS and Bax expression were also inhibited by OMJT. In particular, Fas expression, which is generally recognized as cell death inducing signal by Fas/FasL interaction, was markedly increased by $H_2O_2$ in a time-dependent manner, whereas this increase was completely prevented by OMJT. The combined treatment of OMJT and $H_2O_2$ in H9c2 cells also reduced activation of caspase-9 and caspase-3 like protease. Taken together, this study indicates that the protective effects of the water extract of OMJT against oxidative damage may be mediated by the modulation of BcI-XL/S and Bax expression by way of the regulation of mitochondrial membrane potential and caspase cascades.

  • PDF

Artemisia capillaris Thunb. inhibits cell growth and induces apoptosis in human hepatic stellate cell line LX2

  • Kim, Young-Il;Lee, Jang-Hoon;Park, Seung-Won;Choi, In-Hwa;Friedman, Scott L.;Woo, Hong-Jung;Kim, Young-Chul
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.254-262
    • /
    • 2010
  • Artemisia capillaris (A. capillaries) is known to play roles in many cellular events, such as cell proliferation, differentiation, and apoptosis. We investigated the antifibrogenic efficacy of A. capillaris in the immortalized human hepatic stellate cell line LX2. Cell proliferation was determined by the MTT assay. Cell cycle was analyzed by the flow cytometry. Apoptotic cells were measured using a cell death detection ELISA. Caspase activity was detected by a colorimetric assay. The mRNA level of Bcl-2 and Bax mRNA were measured by real-time PCR. MEK and ERK protein were detected by Western blot analysis. We provide evidence that A. capillaris induces cell cycle arrest, apoptosis, and potently inhibits the mitogen-activated protein kinase pathway. A. capillaris inhibited cell proliferation of LX2 cells in a dose- and time-dependent manner, increased the apoptosis fraction at cell cycle analysis with an accompanying DNA fragmentation, and resulted in a significant decrease in Bcl-2 mRNA levels and an increase in Bax expression. Exposure of LX2 cells to A. capillaris induced caspase-3 activation, but co-treatment of A. capillaris with the pan-caspase inhibitor Z-VAD-FMK, and the caspase-3 inhibitor Z-DEVE-FMK, blocked apoptosis. A. capillaris down-regulated Mcl-1 protein levels and inhibited phosphorylation of MEK/ERK, suggesting that it mediates cell death in LX2 cells through the down-regulation of Mcl-1 protein via a MEK/ERK-independent pathway.

Anti-neoplastic and Anti-inflammatory Effects of Single and Mixed Extracts of Ulmus Davidiana and Oldenlandia Diffusa on Azoxymethane/dextran Sodium Sulfate-induced Colonic Neoplasms (AOM/DSS 유발 대장암에 대한 유근피(楡根皮)와 백화사설초(白花蛇舌草) 단일 및 배합 추출물의 항암 및 항염 효과)

  • Lee, Seon-a;Baek, Dong-gi;Moon, Goo
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.6
    • /
    • pp.863-876
    • /
    • 2017
  • Objectives: The aim of this experimental study was to evaluate the anti-neoplastic and anti-inflammatory effects of single and mixed extracts of Ulmus davidiana (UD) and Oldenlandia diffusa (OD) on azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colonic neoplasms in mice. Methods: AOM/DSS induces colitis-associated colonic neoplasms in mice. Mice were divided into seven groups: normal-no inducement and no treatment; control-colonic neoplasms with no treatment; UD-colonic neoplasms and treatment with UD; OD-colonic neoplasms and treatment with OD; UD1+OD1-colonic neoplasms and treatment with UD1 and OD1. UD1+OD2-colonic neoplasms and treatment with UD1 and OD2; UD2+OD1-colonic neoplasms and treatment with UD2 and OD1. Single and mixed preparations of UD and OD were applied to mice for six weeks. The colon length and weight and histopathologic changes of colon tissue were observed. Serum pro-inflammatory cytokines, including tumor necrosis factor-alpha ($TNF-{\alpha}$) and interleukin-6 (IL-6), were determined by enzyme-linked immunosorbent assay. The mRNA expression levels of Bax, Bcl-2, and interferon-gamma ($INF-{\gamma}$) were measured by RT-PCR. Results: The colon length was significantly increased in OD, UD1+OD2, and UD2+OD1 mice, and the colon weight was significantly decreased in OD and UD1+OD2 mice. The morphological change of colon epithelial cells was more suppressed in complex-treatment groups than in single-treatment groups. The inhibitory effect on inflammatory cell invasion was especially shown in UD1+OD2 mice. The serum level of the pro-inflammatory $TNF-{\alpha}$ was decreased in all complex-treatment groups, and the IL-6 level was decreased in UD1+OD1 mice. Single-treatment groups had an increase in the mRNA expression of the pro-apoptosis regulator Bax, and UD2+OD1 decreased the mRNA expression of the anti-apoptosis regulator Bcl-2. The mRNA expression of $INF-{\gamma}$ associated with inflammation was decreased in OD and UD1+OD2 mice. Conclusions: This study suggests that single and mixed extracts of Ulmus davidiana and Oldenlandia diffusa have anti-neoplastic and anti-inflammatory effects on AOM/DSS-induced colonic neoplasms in mice. Therefore, we conclude that UD, OD, and a mixture of UD and OD are potential therapeutic agents for colitis-associated colonic neoplasms.

Melatonin Induces Apoptotic Cell Death via p53 in LNCaP Cells

  • Kim, Chi-Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.365-369
    • /
    • 2010
  • In this study, we examined whether melatonin promotes apoptotic cell death via p53 in prostate LNCaP cells. Melatonin treatment significantly curtailed the growth of LNCaP cells in a dose- and time-dependent manner. Melatonin treatment (0 to 3 mM) induced the fragmentation of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, caspase-8, and caspase-9. Moreover, melatonin markedly activated Bax expression and decreased Bcl-2 expression in dose increments. To investigate p53 and p21 expression, LNCaP cells were treated with 0 to 3 mM melatonin. Melatonin increased the expressions of p53, p21, and p27. Treatment with mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (ERK inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor), confirmed that the melatonin-induced apoptosis was p21-dependent, but ERK-independent. With the co-treatment of PD98059 and melatonin, the expression of p-p53, p21, and MDM2 did not decrease. These effects were opposite to the expression of p-p53, p21, and MDM2 observed with SP600125 and SB202190 treatments. Together, these results suggest that p53-dependent induction of JNK/p38 MAPK directly participates in apoptosis induced by melatonin.

Protective Effect of PineXol® against Amyloid-β-induced Cell Death (아밀로이드 베타로 유도된 신경세포 사멸에 대한 PineXol®의 보호효과)

  • Han, Kyung-Hoon;Lee, Seung-Hee;Park, Kwang-Sung;Song, Kwan-Young;Kim, Jung-Hee;Park, Eun-Kuk;Han, Sung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1279-1285
    • /
    • 2017
  • $Amyloid-{\beta}$ protein ($A{\beta}$) is known to increase free radical production in neuronal cells, leading to cell death by oxidative stress. The purpose of this study was to evaluate the protective effects of $PineXol^{(R)}$ on $A{\beta}_{25-35}$ induced neuronal cell death. Rat pheochromocytoma (PC-12) cells were pre-treated with $100{\mu}g/mL$ of $PineXol^{(R)}$ for 2 h. The cells were exposed to single dose of $30{\mu}M$ $A{\beta}_{25-35}$ for 24 h. Cell death was assessed by a cell count kit-8 (CCK-8) assay, lactate and dehydrogenase (LDH) release assay. An Apoptotic process was analyzed by a protein expression of the Bcl-2 family using western blotting. Cell viability increased in PC-12 cells treated with both $A{\beta}_{25-35}$ and $PineXol^{(R)}$, compared to the control group. $PineXol^{(R)}$ induced a decrease of the Bcl-2 protein expression (p<0.05), while Bax and Sod1 increased (p<0.05), indicating attenuation of $A{\beta}_{25-35}$ induced apoptosis. These results suggest that $PineXol^{(R)}$ may be a good candidate for the prevention of Alzheimer's disease(AD).

Ca2+-ATPase and cAMP-mediated Anti-Apoptotic Effects of Acanthopanax senticosus Extracts on Ischemia/Reperfusion Liver Damages

  • Xie, Guang-Hua;Jeong, Jae-Hun;Choi, Sun Eun;Jeong, Seung Il;Park, Kwang-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.647-653
    • /
    • 2017
  • Hepatic ischemia-reperfusion injury (HIRI) is linked with high mortality rate. Several agents have been developed so far to reduce the risk of HIRI. In this study, we investigated the effects of Acanthopanax senticosus extract (AS) on hepatic ischemia-reperfusion. To explore the protective effects of A. senticosus extract injection (ASI) on hepatic ischemia-reperfusion injury rats animal model were used. After the development of HIRI by using clamping method rats were then randomly divided into five groups. Different doses of AS were administered in HIRI rat model. The level of ALT, AST, and MDA content in serum were detected in sham and HIRI groups. The activity of SOD, MPO and $Ca^{2+}-ATPase$, content of MDA, and cAMP in hepatic tissue were also measured. Expression of Bcl-2 and Bax protein were detected by immunohistochemical staining method. Compared with sham group, ASI has the protective effect on the HIRI model in rats. Blood levels of ALT, AST, SOD, MPO, and MDA were significantly lower in ASI group compared with HIRI. Indeed SOD and $Ca^{2+}-ATPase$ activities, MDA content, and cAMP level were improved in ASI group. Furthermore, Bcl-2 and Bax protein were improved in ASI group compared with only HIRI group. These results suggest that AS may provide potential ameliorative therapy by inhibiting the damage signaling mechanism in hepatic ischemia/reperfusion injury model.

The effect of resistance exercise on β-amyloid metabolism and cognitive function in a mouse model of Alzheimer's disease (저항성 운동이 알츠하이머 형질전환 생쥐 뇌의 베타 아밀로이드 대사와 인지기능에 미치는 영향)

  • Jang, Yong-Chul;Koo, Jung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.418-428
    • /
    • 2020
  • The aim of this study was to investigate the effect of resistance exercise(RE) on beta-amyloid(Aβ) metabolism, neuronal cell death, and cognitive function in the transgenic mice model of Alzheimer's disease(AD). Fourteen transgenic(tg) mice and fourteen non-transgenic(non-tg) mice were divided into four groups: (1)non-tg-control(NTC, n=7) (2)non-tg-RE(NTRE, n=7) (3)tg-control(TC, n=7), and (4)tg-RE(TRE, n=7). The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. After then, the cognitive function was measured by using the water maze test, and Aβ metabolism-related proteins, neuronal cell death, and SIRT1/PGC-1α pathway were also measured. Here, we found escape latency and time were significantly increased in the TC compared to the NTC group, but it was significantly reduced in the TRE group, indicating RE may ameliorate cognitive dysfunction. Next, we found an increased in Aβ protein of TC compared to NTC, but it was significantly reduced in the TRE group following RE. In neuronal cell death, Bcl-2 was also significantly decreased and Bax was significantly increased in the TC compared to the NTC group, but RE can increase Bcl-2 and reduce Bax, which may elevate the ratio of Bcl-2/Bax. We further found a decrease in the level of ADAM10 and RARβ protein was significantly increased whereas increased in ROCK1 and BACE1 expression level was significantly reduced following RE in the TRE compared to the TC group. In addition, the level of SIRT1/PGC-1α proteins was decreased in the TC group compared to NTC group, but, these markers were significantly increased in the TRE group following RE. Therefore, our finding indicated that RE may ameliorate cognitive deficits by reducing Aβ protein and neuronal cell death via regulating SIRT1/PGC-1α, amyloidogenic pathway, and non-amyloidogenic pathway, which may play a role in an effective strategy for AD.

Anti-proliferative Effects of β-ionone on Human Lung Cancer A-549 Cells (β-ionone의 인체 비소폐암세포 A-549에 대한 anti-proliferative 효과)

  • Lee, Sun Min;Kim, Young Sook;Jang, Wook Jin;Rakib, Abdur Md.;Oh, Tae Woo;Kim, Boh Hyun;Kim, So Young;Kim, Jeong Ok;Ha, Yeong Lae
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1351-1359
    • /
    • 2013
  • The anti-proliferative activity of ${\beta}$-ionone was investigated on human non-small lung cancer A-549 cells (designated A-549 cells). A-549 cells were treated with various concentrations of ${\beta}$-ionone (1, 5, 10, and 15 ${\mu}M$) for two, four, and six days. Biochemical markers related to the growth inhibition of A-549 cells by ${\beta}$-ionone were measured at the second day of incubation. ${\beta}$-Ionone inhibited the growth of A-549 cells by dose-and time-dependent manners, resulting in an $IC_{50}$ of 5.0 ${\mu}g/ml$ at the second day of incubation. ${\beta}$-Ionone induced apoptosis by a dose-dependent manner. ${\beta}$-Ionone increased levels of p53, p21, and Bax proteins, but suppressed expression of the Bcl-2 protein. Similarly, ${\beta}$-ionone enhanced cytochrome c release from the mitochondria to the cytosol, and induced activation of caspase-9 and -3. Additionally, ${\beta}$-ion-one reduced $cPLA_2$ and COX-2 protein levels. These results suggest that the ${\beta}$-ionone inhibits the proliferation of A-549 cells through reciprocal regulation of Bax and Bcl-2 gene expression and suppression of $cPLA_2$ and COX-2 protein expressions.

Intervention Effects of Nedaplatin and Cisplatin on Proliferation and Apoptosis of Human Tumour Cells in Vitro

  • Su, Xiang-Yu;Yin, Hai-Tao;Li, Su-Yi;Huang, Xin-En;Tan, Hua-Yang;Dai, Hong-Yu;Shi, Fang-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4531-4536
    • /
    • 2012
  • Objective: To study synergistic effects of nedaplatin and cisplatin on three human carcinoma cell lines (esophageal carcinoma cell line Eca-109, ovarian carcinoma Skov-3 and cervical carcinoma Hela). Methods: Inhibition effects were evaluated by MTT assay and cell apoptosis was detected by flow cytometry. In addition, changes of Ki-67, Bax and Bcl-2 at mRNA and protein levels were quantified by RT-PCR and Western blotting. Results: Growth inhibition in each cell lines was dose-dependent after exposure to nedaplatin or cisplatin alone. The interaction of the two drugs was synergistic at higher concentrations according to the median-effect principle. The inhibition rates with nedaplatin, cisplatin and combined treatment were $41.9{\pm}4.1%$, $47.4{\pm}2.9%$, $52.5{\pm}0.9%$(Eca-109), $39.0{\pm}1.26%$, $45.0{\pm}1.45%$, $56.2{\pm}1.44%$ (Skov-3) and $44.8{\pm}2.11%$, $46.9{\pm}0.99%$, $56.6{\pm}1.83%$ (Hela) respectively, with increase in apoptosis. Compared with the nedaplatin or cisplatin alone treatment group, the combinative treatment group's Ki-67 and bcl-2 mRNA (protein) expression was decreased while that of Bax mRNA (protein) was increased. Conclusion: Compared to the effects of nedaplatin or cisplatin alone at high concentrations, combination of nedaplatin and cisplatin at low concentrations proved to be much more effective for inhibition of proliferation and the induction of apoptosis in the Eca-109, Skov-3 and Hela cell lines.