• 제목/요약/키워드: BASIN MANAGEMENT

검색결과 817건 처리시간 0.035초

Water Resources Planning for the 2S River Basin in Viet Nam

  • Ko, Ick Hwan;Choi, Byung-Man;Kim, Jeong-kon;Pi, Wan-Seop;Shin, Jae-Sung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.78-78
    • /
    • 2020
  • The Se San and Srepok river basins (2S) are the two major tributaries of the Mekong River, both of which originate in the territory of Viet Nam and flow to Cambodia to meet at Stung treng with the Sekong river (originating in Lao PDR) to form the 3S river basin before joining the Mekong mainstream. In the territory of Viet Nam, the 2S river basins are located in the Central Highlands including 5 provinces, arranged by geographical location from north to south namely Kon Tum, Gia Lai, Dak Lak, Dak Nong and Lam Dong. This is a region with a very important strategic position in terms of economy, politics and defense for the whole country with many potential advantages for economic development. However, the limited and vulnerable basin water resources are under the pressure of socio-economic development in line with increasing water demands for various sectors. In order to overcome the water management challenges, a long-term water resources planning has conducted to support the 2S River Basin Committee (RBC) in effective planning and operation as part of the WB Mekong-Integrated Water Resources Management (IWRM) Project. This paper introduces the outline and progress of the river basin planning using analytical DSS toolkits to analyze, evaluate and formulate the planning options.

  • PDF

대규모 유역에서의 적정 용수이용량 산정 (Optimal Estimation of Water Use in the Large-Scale Basin)

  • 류경식;황만하
    • 한국농공학회논문집
    • /
    • 제49권3호
    • /
    • pp.3-10
    • /
    • 2007
  • In general method to estimate the water supplies in the large-scale basin, indirect estimation method such as unit loading factor method has been used. However, the estimated water supplies are much different to the real water supplies used in the any basin because these general methods estimate them considering water supply demands only. Especially, water supplies for irrigation are big different to the real water supplies in which the water supplies for irrigation are depend on the weather conditions such as evaporation, basin conditions such as infiltration, the reservoir operation rule for irrigation water, and distribution methods. Thus, a new estimation method is developed to estimate the real water demands which is essential factors for the effective water resources operation in the basin. This method is for estimating the water supplies and return rates based on the survey of the irrigation reservoirs and the analysis of effects to the stream flows, return flows, and water supplies for irrigation which water supplies and return rates are used in the basin water management model. The water supply usages in each subbasin are validated by comparisons between the simulated discharges from the basin water management model and the discharges measured in the control points.

Soil Loss Vulnerability Assessment in the Mekong River Basin

  • Thuy, Hoang Thu;Lee, Giha
    • 한국지반환경공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.37-47
    • /
    • 2017
  • The Mekong River plays an extremely important role in Southeast Asia. Flowing through six countries, including China, Myanmar, Thailand, Laos PDR, Cambodia, and Vietnam, it is a site of great biological and ecological diversity and the habitat of numerous species of fish. It also supports a very large population that lives along the river basin. Therefore, much attention has been focused on the giant Mekong River Basin, particularly, its soil erosion and sedimentation problems. In fact, many methods have been used to calculate and simulate these problems. However, in the case of the Mekong River Basin, the available data is limited because of the extreme size of the area (about $795,000km^2$) and lack of equipment systems in the countries through which the Mekong River flows. In this study, we applied the Universal Soil Loss Equation (USLE) model in a GIS (Geographic Information System) framework to calculate the amount of soil erosion and sediment load during the selected period, from 1951 to 2007. The result points out dangerous areas, such as the Upper Mekong River Basin and 3S Basin (containing the Sekong, Sesan, and Srepok Rivers) that are suffering the serious consequences of soil erosion problems. Moreover, the present model is also useful for supporting river basin management in the implementation of sustainable management practices in the Mekong River Basin and other basins.

낙동강수계 3단계 광역시·도 경계지점 목표수질 설정을 위한 관리권역 및 관리목표 설정 방법 연구 (Research on the Development Management Basin and Goal for 3th T.W.Q on the Boundary between Metropolitan Cities/Dos Specified in Nakdong River Basin)

  • 황하선;박지형;김용석;류덕희;최유진;이성준
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.569-575
    • /
    • 2015
  • The current Total Pollution Load Control (TPLC) sets the Target Water Quality (TWQ) by utilizing the delivery ratio, unit loads, and water quality modeling, it also allocates the watershed's permitted discharge load. Currently, common target pollutants of every unit watershed in TPLC are BOD and T-P. This study has reviewed the 1th and 2th of TWQ setting process for the Nakdong River 3th TWQ setting in Total Pollution Load Control (TPLC). As a result of review, 1th and 2th were divided into one management basin (mulgeum) for setting management goals. However, 3th was divided into six management basins (mulgeum, gnagjeong, geumho river, nam river, miryang river, end of nakdong river). The principle of management goal setting were to achieve the objective criteria of Medium Areas for the linkage of the water environment management policy. And Anti-Degredation (principle of preventing deterioration) were applied to the 3th TWQ. Also, additional indicators were considered in accordance with the reduction scenarios for the final management goals.

금강수계의 물환경기준과 목표수질 설정방안 (Establishment of Water Quality Standards and Water Quality Target in the Geum-River Basin)

  • 이상진
    • 한국물환경학회지
    • /
    • 제29권3호
    • /
    • pp.438-442
    • /
    • 2013
  • According to Geum-River restoration project, given conditions for management of water environment in the Geum-River were changed. Because of those changes, this study was investigated the establishment of water quality standards and water quality target in the Geum-River basin. For management of water environment in the Geum-River, the sub-basins and watersheds are newly divided and the water quality and ecosystem standards in the sub-basins are reestablished. Considering the consistency of water environment policy and legal system, the legal name of sub-basins and watersheds are unified. TMDL (total maximum daily load) should be implemented in the sub-basin where exceeds the water quality standards and the number of water pollutant among the water quality parameters which exceeds the water quality standards are extremely minimized. The water quality target of water pollutant for implementation of TMDL should be established same or higher concentration of water quality standards.

위성영상(衛星映像)과 GIS를 이용한 하천유역(河川流域)의 유역특성인자(流域特性因子) 추출(抽出)추출 관한 연구(硏究) (Study on the Selection of the Basin Characteristics Parameters in River Basin Using Satellite Images and GIS)

  • 조명희;안승섭
    • 한국지역지리학회지
    • /
    • 제4권1호
    • /
    • pp.121-134
    • /
    • 1998
  • 본 연구에서는 위성영상과 GIS를 이용하여 금호강유역(琴湖江流城)의 유역특성인자(流域特性因子) 주제별로 데이터베이스화하여 수문특성자료(水文特性資料)를 산출하였다. 토지에 대한 정량적인 정보를 제공해 주는 위성영상(衛星映像)처리를 통한 토지이용도 작성은 금호강유역(琴湖江流城)과 같이 광범위한 유역(流域)의 토지이용자료를 분석하는데 매우 효율적이며, 또한 대량의 지표자료의 정확한 분석이 가능하고 이를 다른 주제도와 중첩함으로써 공간적인 주제간의 통계적 연산의 가능성을 확인할 수 있었다. 또한 GIS를 이용한 유역특성인자(流域特性因子)의 분석은, 기본도에서 주제별로 tracing하는 과정은 효과적이지 못하나, 일단 수치화 하여 데이터베이스화하면 상이한 주제도와의 중첩분석과 속성자료와의 상관분석이 가능하므로, 유역(流域)관리와 유역(流域)의 지표공간 분석에 매우 효율적으로 이용될 수 있을 것으로 사료된다. 특히 지표면 변화에 대한 자료의 수정 및 갱신이 용이하며 유역(流域)에 대한 인문사회 속성자료와의 상관분석으로 보다 신속하고 정확한 유역특성자료(流城特性資料)의 추출 및 보다 효율적인 유역(流城)관리 방안을 구축할 수 있을 것이다.

  • PDF

NGO가 바라본 수자원 정책 (Korea Water Resources Policy - from the viewpoint of Korean NGO's)

  • 김제남
    • 한국환경생태학회:학술대회논문집
    • /
    • 한국환경생태학회 2003년도 추계학술논문발표회 논문집
    • /
    • pp.23-29
    • /
    • 2003
  • It has been declared in 1992 at Rio about the management of united water control and method of the management of the water resources at the water basin. And it was also mentioned about the protection of fresh water's quality and it's supply under chapter the 18th of the agenda 21. It has been 10years passed after Rio declaration, and water crisis Is getting more serious than before. Fairly, right for using water resources was given to every life as the public resources. But at the last world water forum, water was commercialized, and regulated as the basic requirement not basic right. Therefore, we could use the water according to the logic of supply and demand at the market, and with money. Furthermore, construction of the big dam which was build to solve the problem of the lack of water became one of problems for water control. Korea is keeping consistent policy such as providing water by the building of dam. Control of the water demand is the most basic and effective policy for the preservation of water resources. If we change the policy such as the construction of the dam, we should put the management of the water demand in the center with the reliable philosophy. United management of the river basin has to be made with the security of water, improvement of water quality, and protection of the ecological side each other. Management of water basin also has to be completed to solve the trouble caused by using water conflict people who live up and down stream. To maintain the good quality of water, management of water basin is necessary. Also, bottom line of the united management of water basin is voluntary involvement of every citizens and local community. We suggest to preserve the origin of river and the upper at the ecological side. It is worth it to preserve.

  • PDF

토양 특성 및 토지이용에 따른 낙동강 상류지역 토양침식위험성 평가 (Soil Erosion Risk Assessment by Soil Characteristics and Landuse in the Upper Nakdong River Basin)

  • 박찬원;손연규;현병근;송관철;전현정;조현준;문용희;윤순강
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.890-896
    • /
    • 2012
  • 본 연구에서는 농촌진흥청에서 구축한 우리나라의 분포형 토양침식지도를 이용하여 낙동강 상류지역인 35개 표준유역 (안동댐 유역 18, 임하댐유역 17)에 대하여 환경부 토지피복도와 중첩분석을 통하여 토지이용별 토양침식위험성을 평가하여 토양침식위험지를 구분하였으며, 이를 정량화 하였다. 추정된 대상유역 총 토양유실양은 2,013천 Mg $yr^{-1}$ 이었으며, 면적당 평균 토양유실량은 $5.6Mg\;ha^{-1}yr^{-1}$ 이었다. 중권역 단위로 살펴보면 토양유실량은 각각 안동댐 유역 979천 Mg $yr^{-1}$, 임하댐 유역 1,034천 Mg $yr^{-1}$ 이었고, 면적당 평균 토양유실량은 각각 안동댐 유역 $6.0Mg\;ha^{-1}yr^{-1}$, 임하댐 유역 (2002) $5.2Mg\;ha^{-1}yr^{-1}$ 이었다. 임하댐과 안동댐 유역내 농경지에서 발생되는 면적당 토양유실량을 비교해 보면 각각 안동댐 유역 $24.0Mg\;ha^{-1}yr^{-1}$, 임하댐 유역 $20.7Mg\;ha^{-1}yr^{-1}$으로 안동댐 유역의 값이 컷지만, 전체 농경지에서 발생되는 토양유실량은 각각 $479,242Mg\;yr^{-1}$, $612,285Mg\;yr^{-1}$ 으로 임하댐 유역이 더 많은 양의 토양침식이 농경지에서 발생할 것으로 추정되었고, 이는 임하댐 유역 전체에서 발생되는 추정 토양침식량의 임하댐 59%에 해당하는 값이었다. 토양의 모재별 특성으로 전체 35개 소유역을 구분 후 소 유역별 면적당 추정 토양유실량을 비교한 결과 "퇴적암 그룹" ($6.4MT\;ha^{-1}yr^{-1}$) > "혼합지역 그룹" (5.8) > "변성암 그룹" (5.5) > "화성암 그룹" (4.3) 순이었으며, 이는 토양유실에 영향을 미칠 수 있는 토양인자인 토성, 경사도 등을 잘 반영하고 있었다.

낙동강 유역의 수질관리를 위한 유역모델링 적용 연구 (Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin)

  • 장재호;안종호
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • 김광섭;순밍동
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF