DOI QR코드

DOI QR Code

Soil Erosion Risk Assessment by Soil Characteristics and Landuse in the Upper Nakdong River Basin

토양 특성 및 토지이용에 따른 낙동강 상류지역 토양침식위험성 평가

  • 박찬원 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 손연규 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 현병근 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 송관철 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 전현정 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 조현준 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 문용희 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 윤순강 (농촌진흥청 국립농업과학원 토양비료관리과)
  • Received : 2012.11.08
  • Accepted : 2012.11.28
  • Published : 2012.12.31

Abstract

This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Upper Nakdong River Basin according to soil characteristics and landuse using the spatial soil erosion map. The study area is $3,605.6km^2$, which consists of 2 subbasins, 35 standard unit watersheds (Andong basin 18, Imha basin 17). As a evaluation of soil erosion potential using the spatial soil erosion map, total annual soil loss and soil loss per area estimated $2,013{\times}10^3Mg\;yr^{-1}$ (Andong basin 979, Imha basin 1,034) and $6.1Mg\;ha^{-1}yr^{-1}$ (Andong basin 6.0, Imha basin 5.2), respectively. 54.2% of soil loss was originated from Arable land (Andong basin 49.0%, Imha basin 59.0%), and the area of regions, graded as higher "Moderate" for annual soil loss, was $201.7km^2$ (Andong basin 84.9, Imha basin 116.8). Average soil loss per area of unit watersheds by classification according to soil dominant parent material types ranked "Sedimentary rock group" > "Mixed group" > "Metamorphic rock group" > "Igneous rock group". In conclusion, the results of this study inform that the classification of soil parent material type would be effective for soil erosion analysis and interpretation in the Upper Nakdong River Basin.

본 연구에서는 농촌진흥청에서 구축한 우리나라의 분포형 토양침식지도를 이용하여 낙동강 상류지역인 35개 표준유역 (안동댐 유역 18, 임하댐유역 17)에 대하여 환경부 토지피복도와 중첩분석을 통하여 토지이용별 토양침식위험성을 평가하여 토양침식위험지를 구분하였으며, 이를 정량화 하였다. 추정된 대상유역 총 토양유실양은 2,013천 Mg $yr^{-1}$ 이었으며, 면적당 평균 토양유실량은 $5.6Mg\;ha^{-1}yr^{-1}$ 이었다. 중권역 단위로 살펴보면 토양유실량은 각각 안동댐 유역 979천 Mg $yr^{-1}$, 임하댐 유역 1,034천 Mg $yr^{-1}$ 이었고, 면적당 평균 토양유실량은 각각 안동댐 유역 $6.0Mg\;ha^{-1}yr^{-1}$, 임하댐 유역 (2002) $5.2Mg\;ha^{-1}yr^{-1}$ 이었다. 임하댐과 안동댐 유역내 농경지에서 발생되는 면적당 토양유실량을 비교해 보면 각각 안동댐 유역 $24.0Mg\;ha^{-1}yr^{-1}$, 임하댐 유역 $20.7Mg\;ha^{-1}yr^{-1}$으로 안동댐 유역의 값이 컷지만, 전체 농경지에서 발생되는 토양유실량은 각각 $479,242Mg\;yr^{-1}$, $612,285Mg\;yr^{-1}$ 으로 임하댐 유역이 더 많은 양의 토양침식이 농경지에서 발생할 것으로 추정되었고, 이는 임하댐 유역 전체에서 발생되는 추정 토양침식량의 임하댐 59%에 해당하는 값이었다. 토양의 모재별 특성으로 전체 35개 소유역을 구분 후 소 유역별 면적당 추정 토양유실량을 비교한 결과 "퇴적암 그룹" ($6.4MT\;ha^{-1}yr^{-1}$) > "혼합지역 그룹" (5.8) > "변성암 그룹" (5.5) > "화성암 그룹" (4.3) 순이었으며, 이는 토양유실에 영향을 미칠 수 있는 토양인자인 토성, 경사도 등을 잘 반영하고 있었다.

Keywords

References

  1. Hur, S.O., Y.K. Sonn, K.H. Jung, C.W. Park, H.H. Lee, S.K. Ha, and J.K. Kim. 2007. Assessement of soil loss estimated bysoil catena originated from granite and gneiss in catchment. Korean J. Soil. Sci. Fert. 40(5):338-391.
  2. Jang, C.H., J. Ryu, H. Kang, D, Kum, Y. Kim, H.Y. Park, K.S. Kim, and K. J. Lim. 2011. Development of SATEEC R module using daily rainfall data. Korean J. Soil. Sci. Fert. 44(6):983-990. https://doi.org/10.7745/KJSSF.2011.44.6.983
  3. Jung, K.H., Y.K. Sonn, S.Y. Hong, S.O. Hur, and S.K. Ha. 2005. Assessment of National Soil Loss and Potential Erosion Area using the Digital Detailed Soil Maps. Korea J. Soil Sci. Fert. 38:59-65.
  4. Jung, K.H., Y.K. Sonn, S.Y. Hong, S.O. Hur, and S.K. Ha. 2005. Assessment of National Soil Loss and Potential Erosion Area using the Digital Detailed Soil Maps. Korean J. Soil Sci. Fert. 38:59-65.
  5. Jung, Y.S., Y.K. Kwon, H.S. Lim, S.K. Ha, P.K. Jung, and Y.E. Yang. 1999. R and K factors for an application of RUSLE on the slope soils in Kangwon-Do, Korea. Korean Soc. Soil. Sci. Fert. 32:31-38.
  6. Lee, G.S. and J.H. Park. 2006. The analysis of GIS DB for the evaluation of turbid water considering spatial characteristics of river channel. Korean Society of Surveying Geodesy Photogrammetry and Cartography. 24(1):1-8.
  7. Lee, J.W., J.S. Eom, B.C. Kim, W.S. Jang, J.C. Ryu, H.W. Kang, K.S. Kim, and K.J. Lim. 2011. Water quality prediction at Mandae watershed using SWAT and water quality improvement with vegetated filter strip. Korean K. Soc. Agri. Engi. 53(1):37-45. https://doi.org/10.5389/KSAE.2011.53.1.037
  8. Ministry of Environment. 2006. Basic plan for management of water environment (In Korean).
  9. National Academy of Agricultural Science. 2006. Research Report (In Korean).
  10. National Academy of Agricultural Science. 2007. Research Report (In Korean).
  11. Park, C.W., Y.K. Sonn, B.K. Hyun, K.C. Song, H.C. Chun, Y.H. Moon, and S.G. Yun. 2011. The redetermination of USLE rainfall erosion factor for estimaion of soil loss at Korea. Korean J. Soil. Sci. Fert. 40(6):977-982.
  12. Park, Y.S., J.G. Kim, N.W. Kim, K.S. Kim, J.D. Choi, and K.J. Lim. 2007. Analysis of sediment yields and watershed scale using Area/Slope-based sediment delivery ratio in SATEEC. Korean. J. Sco. Water Qual. 23(5):650-658.
  13. Renard, K.G., G.R. Foster, G.A. Weesies, D K. McCool, and D.C. Yoder. 1997. Prediction soil erosion and water: A guide to conservation planning with the revised USLE, US. Dep. Agric., Agric. Handbook No. 703.
  14. Sonn, Y.K., B.K. Hyun, S.J. Jung, S.O. Hur, K.H. Jung, M.C. Seo, and S.K. Ha. 2007. Morpholigical classification of unit basin based on soil & geo-morphological characteristics in the Yeongsangang basin. Korean J. Soil. Sci. Fert. 40(4): 262-268.
  15. Wischmeier, W.H. and D.D. Smith. 1965. Predicting rainfallerosion losses from cropland east of the Rocky Mountains: A guide for selection of practices for soil and water conservation. US. Dep. Agric., Agric. Handbook No. 282.
  16. Wischmeier, W.H. and D.D. Smith. 1978. Predicting rainfall-erosion losses: A guide to conservation planning. US. Dep. Agric., Agric. Handbook No. 537.