• 제목/요약/키워드: BAC-Sand Filter

검색결과 7건 처리시간 0.022초

Pilot Scale 생물활성탄 여과공정을 이용한 상수의 고도처리 (Advanced water treatment in pilot scale BAC-sand filter)

  • 이윤진;문철훈;김재우;남상호
    • 환경위생공학
    • /
    • 제17권4호
    • /
    • pp.47-52
    • /
    • 2002
  • This study was carried out to examine the characteristics of dual media filter with BAC and sand on a pilot scale which was installed in T Water Treatment Plant of Seoul. The conclusions drawn from experimental results are as follows : For the BAC-Sand filter, the preceded gravity sand filter did not largely affect the removal of organics and turbidity causing matters, tut the frequency of backwashing was explicitly reduced to two times with the stable growth of microorganisms. The biomass on media in case of existence of preceded sand filter was 1.4 times higher than that of nonexistence. In case of backwashing with water, the time needed to comply with below 10NTU took 22, 10, and 5 minutes respectively with the expansion ration of 1.2, 1.5 and 1.8. The higher the expansion ration was, the shorter the backwashing time was.

BAC Pilot Plant 를 이용한 겨울철 암모니아성 질소 제거 및 THMs 변화 (Removal of Ammonia Nitrogen and Reduction of THMs in Low Temperature by BAC Pilot Plant)

  • 강은조;서영진;이원권;전병희;이지형;윤정효;김동윤
    • 상하수도학회지
    • /
    • 제9권4호
    • /
    • pp.107-114
    • /
    • 1995
  • The raw drinking water quality is getting worse because of the winter drought and the conventional treatment system is'nt suitable to obtain the satisfied quality of water. So, the advanced water system, BAC(Biological Activated Carbon) process is said to be effective to remove dissolved organics and ammonia nitrogen. In our study, the BAC pilot plant using Nak-dong river water is tested in low temperature. Following results are found from the study. The ammonia nitrogen removal rate of BAC system using wood-based carbon (PICABIOL) was 99% in $6^{\circ}C$ temperature. Chlorine dosage in wood-based BAC effluent was reduced to 67% of that in sand filtered wate. It resulted from the removal of ammonia nitrogen. Also, THM formed by chlorine addition in wood-based BAC effluent was decreased to 65% of that in sand filtered water. In the case of dual-filter, the removal efficiency of ammonia nitrogen was increased 30% more than in conventional sand filter. According to this result, the ammonia nitrogen load to BAC system could be lessened by the use of dual-filter.

  • PDF

생물활성탄처리에서 제거된 유기물 특성 (Characterization of Organic Matters Removed by Biological Activated Carbon)

  • 김우항;오카다미츠마사
    • 한국환경과학회지
    • /
    • 제16권6호
    • /
    • pp.671-675
    • /
    • 2007
  • The objective of this study was to clarify the characteristics of the removed micropollutant since the breakthrough of adsorption ability was occurred in biological activated carbon(BAC) process. The removal efficiency of DOC (Dissolved Organic Carbon) was 36 % in the breakthrough of BAC occurred by NOM (Natural Organic Matter). The most of removal DOC was found out the adsorbable and biodegradable DOC (A&BDOC). But it was not clear to remove by any mechanism because A&BDOC have simultaneously the adsorption of activated carbon and biodegradation by microorganism in BAC. The removal of bromophenol was examined with BAC and rapid sand filter, for investigation of DOC removal mechanism in the breakthrough of BAC. In this experiment, BAC filter has been operated for 20 months for the treatment of reservoir water. The BAC filter was already exhausted by NOM. Bromophenol, adsorbable and refractory matter, was completely removed by BAC filter. Therefore, it might be removed by the adsorption in BAC. Adsorption isotherms of bromophenol were compared to two BACs which was preloaded with 500 daltons and 3,000 daltons of NOM. BAC preloaded with 3,000 daltons of NOM was not decreased to the adsorbability of bromophenol but BAC preloaded with 500 daltons of NOM was greatly decreased to it. These result indicated that NOM of low molecular weight can be removed by adsorption after a long period of operation and the breakthrough by NOM in BAC. Therefore, micropollutants might be removed through adsorption by saturated BAC.

정수처리용 활성탄 공정의 적정 역세척 시점 선정을 위한 영향인자들 평가 (Evaluation of Influence Factors for Determination of Proper Backwashing Time of Biological Activated Carbon (BAC) Process in Drinking Water Treatment Process)

  • 김상구;박홍기;손희종;염훈식;류동춘
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1551-1558
    • /
    • 2015
  • In Korea, many drinking water treatment plants (DWTPs) have introduced and are going to introduce biological activated carbon (BAC) process to treated dissolved organic matter (DOM) in water which are difficult to control by conventional water treatment processes. Even though more decade have passed since introduced BAC in Korea, most of BAC operating method was followed to the modified sand filter operating manuals. In case of BAC backwashing, many DWTPs set the periods of backwashing about 3~5 days. In this study, we have collected data to set the proper BAC backwashing periods from both pilot-plant and real DWTPs. We had measured heterotrophic plate count (HPC), turbidity, water temperature, dissolved organic carbon (DOC) and headloss from just after backwashing to the next backwashing time for two years. Considering water quality factors, the BAC run time from backwashing to the next backwashing could extend more 30 days without water quality deterioration if the head loss do not reach the limited level which depends on each BAC facilities' condition. It means the BAC treated water could be saved in the proportion of extended the backwashing period to the existing backwashing period.

암모니아성질소를 함유한 금강중류 하천수의 오존-활성탄처리 (Ozone-Activated Carbon Treatment in Middle Keum River containing Ammonia-Nitrogen)

  • 김충환;정상기;김학성
    • 한국물환경학회지
    • /
    • 제18권4호
    • /
    • pp.355-363
    • /
    • 2002
  • A demonstration plant was carried out to investigate the removal efficiency of $NH_3-N$ and $KMnO_4$ consumption depending on the existence of pre-chlorination for the ozonation and activated carbon process in the S water treatment plant which is located at the middle of Keum River. The averge removal efficiency of $KMnO_4$ consumption for $O_3/GAC$ processes with pre-chlorination and $O_3/BAC$ processes without pre-chlorination were 48.6% and 50% respectively. It is similar to removal effect of $KMnO_4$ consumption for GAC and BAC process depending on the existence of pre-chlorination. Otherwise, the removal of THMFP for GAC and BAC process was 58% and 68% respectively. $NH_3-N$ was not almost removed by sand filter and ozonation, but the average removal efficiency in the BAC process was about 31%. Especially, $NH_3-N$ was not almost removed by $O_3/BAC$ processes at the low temperature (below $$10^{\circ}C$$) in the winter season, $O_3/BAC$ processes have the advantage of removal of organic substance when it is compared to pre -chlorination followed by $O_3/GAC$ processes. Pre-chlorination followed by $O_3/GAC$ processes were required to remove $NH_3-N$ in the winter season because the removal of $NH_3-N$ was almost ineffective by $O_3/BAC$ process.

이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가 (Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant)

  • 우달식;송시범;황병기
    • 한국산학기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.857-864
    • /
    • 2009
  • 본 연구에서는 겨울철 수온강하, 여름철 우천시 표류수 중의 고탁도 물질 및 봄, 가을철의 조류성장 시기 등을 고려하여 기존의 급속모래여과시스템을 이단 이층 복합여과시스템으로 개량하는 기술을 개발하는 것을 목표로 하였다. 본 기술은 기존 여과지의 개량 또는 신설 여과지 설계시 또 다른 부지의 확장 없이 기존 모래여과지를 대체하는 기술로서 하부집수장치 상부에 모래 + 활성탄 층을 두고 활성탄 층 상부에 일정한 간격의 역세 팽창층을 두고 전 처리의 개념으로 중간집수장치 위에 모래층을 두는 이단 이층 복합여과시스템을 말한다. 본 연구에서는 이단이층 복합여과시스템을 경기도 S 정수장에 소규모 파일롯 플랜트를 설치하였으며, 탁도는 INTU 이하로 안정하게 유지되었고, TOC, THMFP, HAAFP는 약 90%정도 제거되어 S정수장에 비해 약 2배 정도 높았으며, 이는 본 시스템의 하단에 충전된 활성탄층에서의 흡착 및 생물분해 효과에 기인된 것으로 판단된다.

고도정수처리 공정에서 브로메이트의 거동 평가 (Formation behaviour of Bromate in Processes of Advanced Water Treatment System using Nakdong river water)

  • 김영진;현길수
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.605-610
    • /
    • 2011
  • The objectives of this study are to investigate a bromate behaviour in the processes of advanced water treatment system (AWTS: preozonation, coagulator-settler, rapid sand filter, postozonation, biological activated carbon (BAC) beds) and to investigate the effects of ozonation, pH and ammonia nitrogen on bromate (${BrO^-}_3$) formation. As a result, $BrO_3$ was not detected in the processes of the AWTS without ozonation, while it was detected in a preozonated and postozonated water. For $BrO_3$ formation during June to November, the $BrO_3$ concentration of <9.4${\mu}g/L$ was observed in postozonated water, while it was reduced to about 46% by BAC beds. When applied ozone dosage and ozone contact time for influent with $Br^-$ of <0.3mg/L were 0.5-2.0mg/L.min and 10 min., $BrO_3$ concentration increased with increasing ozone dosage. Longer contact time and lower ozone level also was needed to inhibit the formation of $BrO_3$. At ozone dosage of 1.4 mg/L.min, the formation rate of $BrO_3$ increased with increase of pH value. When $NH_4-N$ concentration increased from 0.1mg/L to 0.4mg/L, $BrO_3$ concentration decreased to about 38%. These results revealed that $BrO_3$ concentration increased with increasing Br level, ozone dosage, and pH value, while it decreased with increase of $NH_4-N$ concentration.