• Title/Summary/Keyword: B3LYP/6-31G

Search Result 92, Processing Time 0.027 seconds

DFT Calculation on the Electron Affinity of Polychlorinated Dibenzo-p-dioxins

  • Lee, Jung-Eun;Choi, Won-Yong;Mhin, Byung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.792-796
    • /
    • 2003
  • Polychlorinated dibenzo-p-dioxins (PCDDs) are extremely toxic and persistent environmental pollutants. Their chemical reactivities and other physicochemical/biological properties show a strong dependence on the chlorination pattern. With increasing the number of chlorines, dioxin congeners become more electronegative and gain higher electron affinities. The vertical electron affinities (VEA) are related with the LUMO energies of neutral molecules. LUMO energies of all PCDD congeners were calculated at the B3LYP/6-31G** level and those of some selected congeners at the level of B3LYP/6-311G**//B3LYP/6-31G** and B3LYP/cc-pvtz/ /B3LYP/6-31G**. The total energies of neutral and anionic species for dibenzo-p-dioxins (DD), 1469-TCDD, 2378-TCDD, and OCDD were calculated at the level of B3LYP/6-31G**, B3LYP/aug-cc-pvdz, and B3LYP/ aug-cc-pvtz//B3LYP/6-31G**. By using the four congeners with D2h symmetry as reference molecules, we could estimate VEA (B3LYP/aug-cc-pvdz) of 75 PCDD congeners based on the linear correlations between LUMO energy and VEA (B3LYP/6-31G**) and between VEA (B3LYP/6-31G**) and VEA (B3LYP/aug-ccpvtz// B3LYP/6-31G**). Results show that all PCDDs with the number of Cl ≥ 3 have positive electron affinities. The PCDD electron affinity values provided in this work can be a useful data set in understanding the congener-specific reactivities of dioxins in various environmental media.

DFT Study for Cage-annulated p-tert-Butylcalix[4]crown-ether Complexed with Potassium Ion

  • Kim, Kwang-Ho;Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1374-1378
    • /
    • 2008
  • Using DFT B3LYP/6-31+G(d,p)//B3LYP/6-31G(d,p) calculation method, stable molecular structures were optimized for the p-tert-butylcalix[4]arene functionalized at lower rim by cage-annulated crown ether (1) in two different conformers and their potassium-ion complexes. Cone conformer of free host 1 was slightly more stable than partial-cone conformer. For two different kinds of complexation mode, the potassium ion in benzene-rings (bz) pocket showed comparable complexation efficiency with the cation in cage-annulated crown-ether (cr) for the cone and partial-cone conformers of 1. The complex (1${\bullet}K^+$) in the cr-binding mode for the partial-cone conformer was more stable than the cone conformer for B3LYP/6-31G(d,p) geometry optimization. However, $1_{(cone)}{\bullet}K^+$(cr) showed lower single-point energy than the $1_{(pc)}{\bullet}K^+$(cr) for B3LYP/6- 31+G(d,p) calculation method.

Ab Initio Study of Complexation of Alkali Metal Ions with Alkyl Esters of p-tert-Butylcalix[4]arene

  • Choe, Jong-In;Oh, Dong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.847-851
    • /
    • 2004
  • The complexation characteristics of tetramethyl (1) and tetraethyl esters (2) of p-tert-butylcalix[4]arene with alkali metal cations have been investigated by ab initio calculation. The structures of endo- or exocomplexation of the hosts in cone conformation with alkali metal ions have been optimized using HF/6-31G method followed by B3LYP/6-31G(d) single point calculation. B3LYP/6-31G(d) calculations suggest that exo-complexation efficiencies of sodium ion to the cavity of lower rim of hosts 1 and 2 are 27.1 and 25.8 kcal/mol better than that of potassium ion, respectively. The exo-complexation efficiencies of potassium ion to the cavity of lower rim of hosts 1 and 2 are 33.3 and 31.5 kcal/mol better than the endo-complexation inside the upper rim (four aromatic rings) as expected from the experimental results. B3LYP/6-31G(d) calculation of the ethyl ester 2 shows 29.5 and 30.8 kcal/mol better exo-complexation efficiency for both sodium and potassium ions than the methyl ester 1.

Molecular Structure and Vibrational Spectra of 9-Fluorenone Density Functional Theory Study

  • 이상연;부봉현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.760-764
    • /
    • 1996
  • The molecular geometry and vibrational frequencies of 9-fluorenone have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr(B3LYP) density functional methods with 6-31G* basis set. Harmonic vibrational frequencies obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals are newly assigned based on the B3LYP results. The B3LYP calculation is reconfirmed to be useful in the assignment of the fundamental vibrational frequencies.

Theoretical Study on the Pyrolysis of Sulphonyl Oximes in the Gas Phase

  • Xue, Ying;Lee, Kyung-A;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.853-858
    • /
    • 2003
  • The reaction mechanism of the pyrolysis of sulphonyl oximes ($CH_3-C_6H_4-S(O)_2O-N=C(H)-C_6H_4Y$), in the gas phase is studied theoretically at HF/3-21G, ONIOM (B3LYP/6-31G**:HF/3-21G) and ONIOM (MP2/6- 31G**:HF/3-21G) levels. All the calculations show that the thermal decomposition of sulphonyl oximes is a concerted asynchronous process via a six-membered cyclic transition state. The activation energies (Ea) predicted by ONIOM (B3LYP/6-31G**: HF/3-21G) method are in good agreement with the experimental results for a series of tosyl arenecarboxaldoximes. Five para substituents, Y = $OCH_3$, $CH_3$, H, Cl, and $NO_2$, are employed to investigate the substituent effect on the elimination reaction. Linear Hammett correlations are obtained in all calculations in contrast to the experimental finding.

A Computational Investigation of the Stability of Cyclopropyl Carbenes

  • Baik, Woon-Phil;Yoon, Cheol-Hun;Koo, Sang-Ho;Kim, Byeong-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.90-96
    • /
    • 2004
  • The conformations of dicyclopropyl, isopropyl cyclopropyl, and diisopropylcarbenes were optimized using density functional theory (B3LYP/6-31G(d)). We showed that the optimized geometries of carbenes with cyclopropyl groups are fully in accord with those expected for bisected W-shaped conformations, in which the effective hyperconjugation of a cyclopropyl group with singlet carbene can occur. The stabilization energies were evaluated at the B3LYP/6-311+G(3df, 2p)//B3LYP/6-31G(d) + ZPE level using an isodesmic equation. The relative stability of carbenes is in the order $(c-Pr)_2$C: > (i-Pr)(c-Pr)C: > $(i-Pr)_2$C:, and a cyclopropyl group stabilizes carbene more than an isopropyl group by nearly 9 kcal/mol. Energies for the decomposition of diazo compounds to carbenes increase in the order $(c-Pr)_2$ < (i-Pr)(c-Pr) < $(i-Pr)_2$ by ~9 kcal/mol each. From a singlettriplet energy gap ($E_{ST}$) calculation, the singlet level is lower than the triplet level and the $E_{ST}$ shows a trend similar to the stabilization energy calculations. For comparison, the optimized geometries and stabilization energies for the corresponding carbocations were also studied at the same level of calculation. The greater changes in geometries and the higher stabilization energies for carbocations compared to carbenes can explain the greater hyperconjugation effect.

Ab Initio Calculated Structures and Vibrational Spectra of 1,3-Diethoxy-p-tert-butylcalix[4]crown-5-ether Complexed with Potassium Cation

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.235-240
    • /
    • 2007
  • Molecular structures were optimized for the 1,3-diethoxycalix[4]crown-5-ether (2) in the various isomers and their potassium-ion complexes by using B3LYP/6-31+G(d,p)//B1LYP/6-31G(d,p) method after ab initio RHF/6-31G calculation. The cone-shaped isomer of 2 with cr-binding mode has shown the strongest binding efficiency among the six different complexes attributed to seven electrostatic interactions between the potassium cation and the oxygen atoms of crown-5-ether and ethoxy groups of the host (2). The vibrational spectra of 2 and its K+-complexes were obtained by restricted Hartree-Fock (RHF) calculations with the 6-31G basis set. The characteristic vibrational frequencies of various C-O-C stretching and bending motions are analyzed.

Molecular Structure and Vibrational Spectra of Biphenyl in the Ground and the Lowest Triplet States. Density Functional Theory Study

  • 이상연
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 1998
  • The molecular geometries and harmonic vibrational frequencies of biphenyl in the ground and the first excited triplet states have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G* basis set. Structural change occurs from a twisted benzene-like to a planar quinone-like form upon the excitation to the first excited state. Scaled harmonic vibrational frequencies for the ground state obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals for both states are newly assigned based on the B3LYP results.

Theoretical Investigation for the Adsorption of Various Gases (COx, NOx, SOx) on the BN and AlN Sheets (N과 AlN 시트에 다양한 기체(COx, NOx, SOx)의 흡착에 관한 이론 연구)

  • Kim, Sung-Hyun;Kim, Baek-Jin;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • The adsorption of various atmospheric harmful gases ($CO_x$, $NO_x$, $SO_x$) on graphene-like boron nitride(BN) and aluminum nitride(AlN) sheets was theoretically investigated using density functional theory (DFT) and MP2 methods. The structures were fully optimized at the $B3LYP/6-31G^{**}$ and $CAM-B3LYP/6-31G^{**}$ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The MP2 single-point binding energies were computed at the $CAM-B3LYP/6-31G^{**}$ optimized geometries. Also the zero-point vibrational energy (ZPVE) and 50%-basis set superposition error (BSSE) corrections were included. The adsorptions of gases on the BN sheet were predicted to be a physisorption process and the adsorptions of gases on the AlN sheet were predicted to be a physisorption process for $CO_x$ and $NO_x$ but to be a chemisorption process for $SO_x$.

DFT Conformational Study of Calix[6]arene: Hydrogen Bond

  • Kim, Kwang-Ho;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.837-845
    • /
    • 2009
  • We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the calix[6]arene (1) and p-tert-butylcalix[6]arene (2). The structures of various conformers of 1 were optimized by using the B3LYP/6-31G(d,p) and /6-31+G(d,p) methods followed by single point calculation of MPW1PW91/ 6-31G(d,p). The relative stability of the conformers of 1 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) $\sim$ 1,2-alternate $\sim$ 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of different conformers of 2 were optimized by using the B3LYP/6-31G(d,p) method followed by single point calculation of MPW1PW91/6-31G(d,p). The relative stability of the conformers of 2 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate $\sim$ partial-cone > 1,2,3-alternate > 1,3,5alternate > 1,3-alternate. One of the important factors affecting the relative stabilities of the various conformers of the 1 and 2 is the number and strength of the intramolecular hydrogen bonds.