• Title/Summary/Keyword: B3LYP/6-31G(d)

Search Result 60, Processing Time 0.028 seconds

Theoretical Calculations of Metol as Corrosion Inhibitor of Steel (강철 부식 방지제인 메톨에 대한 이론적 계산)

  • Gece, Gokhan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.671-676
    • /
    • 2009
  • Described here for the first time is an investigation on geometrical and electronic molecular structure of metol (N-methyl-p-aminophenol sulphate) as corrosion inhibitor of steel using density functional theory (DFT) calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap ((${\Delta}E$), Mulliken charges (($q_M$) and natural atomic (($q_n$) charge have been calculated both for gas and aqueous phases by using B3LYP/6-31G+(d,p) basis set. The relation between the inhibition efficiency and quantum chemical parameters have been discussed in order to elucidate the inhibition mechanism of the title compound.

Conformational Analyses for Hydrated Oligopeptides by Quantum Chemical Calculation (양자화학적 계산에 의한 올리고펩티드 수화물의 구조분석)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.95-104
    • /
    • 2018
  • The structures and energies of the anhydrate and hydrate (hydrate rate: h of 1) states of L-alanine (LA) and glycine (G) were calculated by quantum chemical calculations (QCCs) using B3LYP/6-31G(d,p) for four types of conformers (${\beta}$-extended: ${\Phi}/{\Psi}=t-/t+$, $PP_{II}$: g-/t+, $PP_{II}$-like: g-/g+, and ${\alpha}$-helix: g-/g-). In LA and G, which have an imino proton (NH), three conformation types of ${\beta}$-extended, $PP_{II}$-like, and ${\alpha}$-helix were obtained, and water molecules were inserted mainly between the intra-molecular hydrogen bond of $CO{\cdots}HN$ in $PP_{II}$-like and ${\alpha}$-helix, and attached to the CO group in ${\beta}$-extended. In LA and G, $PP_{II}$-like conformers were most stable in the anhydrate and hydrate states, and the result for LA was different from some experimental and theoretical results from other studies reporting that the main stable conformation of alanine oligopeptide was $PP_{II}$. The formation pattern and stability of the conformation of the oligopeptide was strongly dominated by the presence/absence of intra-molecular hydrogen bonding of $CO{\cdots}HN$, or the presence/absence of an $NH_2$ group in the starting amino acid.

Conformations and Vibrational Frequencies of a Precursor of Benzovesamicol Analogues Studied by Density Functional Theories

  • Park, Jong-Kil;Choe, Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2311-2316
    • /
    • 2014
  • Conformations and vibrational frequencies of the racemic (2RS,3RS)-5-amino-3-(4-phenylpiperazin-1-yl)-1,2,3,4-tetrahydronaphthalen-2-ol-(I) [(2RS,3RS)-(I)], a precursor of benzovesamicol analogues, have been carried out using various DFT methods (M06-2X, B3LYP, B3PW91, PBEPBE, LSDA, and B3P86) with basis sets of 6-31G(d), 6-31+G(d,p), 6-311+G(d,p), 6-311++G(d,p), cc-pVTZ, and TZVP. The LSDA/6-31G(d) level of theory shows the best performance in reproducing the X-ray powder structure. However, the PBEPBE/cc-pVTZ level of theory is the best method to predict the vibrational frequencies of (2RS,3RS)-(I). The potential energy surfaces of racemic pairs (2RS,3RS)-(I) and -(II) are obtained at the LSDA/6-31G(d) level of theory in the gas phase and in water. The results indicate that (2RS,3RS)-(I) are more stable by ~0.75 kcal/mol in energy than (2RS,3RS)-(II) in water, whereas conformer AIIg and BIIg are more stable by ~0.04 kcal/mol than AIg in gas phase. In particular, the hydrogen bond distances between the N of piperazine and the OH of tetrahydronaphthalen become longer in gas, compared with those in the water phase. Vibrational frequencies calculated at the PBEPBE/cc-pVTZ level of theory in the gas phase are larger than those in water, whereas their intensities in the gas phase are weaker than those in water.

A DFT Study for the Reaction Pathway(s) of Polycyclic Aromatic Hydrocarbons I: Phenanthrene Degradation with two OH Radicals (다고리 방향족 탄화수소의 반응 경로에 대한 DFT 연구 I: 2개의 OH 라디칼에 의한 페난트렌의 분해 반응)

  • Lee, Min-Joo;Lee, Byung-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • In this study, the DFT calculation was performed using the B3LYP/6-31G(d,p) basis sets for the reaction process in which phenanthrene decomposes due to the chain reaction of two OH radicals on phenanthrene in the gaseous state of 298 K at 1 atm. As a result of the calculation, even when two OH radicals act on phenanthrene in a chain, the reaction for producing phenanthren-9-ol is predicted to be more advantageous than the reaction for producing phenanthren-1-ol. On the other hand, it was predicted that the OH addition process at room temperature would be advantageous for the priority of the OH addition and H abstraction process.

Theoretical Study for Thermally Activated Delayed Fluorescence (TADF) Property in Organic Light-Emitting Diode (OLED) Candidates (유기발광소재(OLED) 후보물질의 지연형광(TADF) 성질에 대한 이론적 연구)

  • Seo, Hyun-il;Jeong, Hyeon Jin;Yoon, Byung Jin;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.151-159
    • /
    • 2019
  • The TADF properties for carbazol-dicyanobenzene, carbazol-diphenyl sulfone, carbazol-benzonitrile derivatives as OLED candidate materials are theoretically investigated using density functional theory (DFT) with $6-31G^{**}$, cc-pVDZ, and cc-pVTZ basis sets. The optimized geometries, harmonic vibrational frequencies, and HOMO-LUMO energy separations are predicted at the B3LYP/$6-31G^{**}$ level of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The time dependent density functional theory (TD-DFT) calculations have been also applied to investigate the absorption and emission wavelength (${\lambda}_{max}$), energy differences (${\Delta}E_{ST}$) between excited singlet ($S_1$) and triplet ($T_1$) states of candidate materials.

Structural and Molecular Orbital Properties of Some Boroxine Derivatives-A Theoretical Study

  • Turker, Lemi;Gumus, Selcuk;Atalar, Tane
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2233-2239
    • /
    • 2009
  • In the present study, firstly, the variations of the geometric parameters induced by different substituents on boroxine skeleton (symmetrically H, $CH_3$, Cl, F, $NO_2$ substituted boroxines) are investigated by using B3LYP/6-31G(d,p), RHF/6-31G(d,p), and MP2/6-31G(d,p) levels of the theory. The second objective is to estimate the substituent effect on the molecular aromaticity of boroxine derivatives using energetic and NICS criteria. Moreover, the effects of different theoretical levels on NICS values have been investigated in a systematic approach. Lastly, a rotational analysis has been performed to investigate the effect of rotation around the B-Me and B-$NO_2$ bonds on total energy of the system. It has been found that electron withdrawing substituents contribute the aromaticity of boroxine affirmatively. Conversely, electron donors make the system less aromatic. Also, the theoretical vibrational spectra for these boroxine derivatives are presented and compared with the experimental data from the literature.

Synthesis, Crystal Structure and Quantum Chemistry of a Novel Schiff Base N-(2,4-Dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine

  • Ji, Ning-Ning;Shi, Zhi-Qiang;Zhao, Ren-Gao;Zheng, Ze-Bao;Li, Zhi-Feng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.881-886
    • /
    • 2010
  • A novel Schiff base N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine has been synthesized and structurally characterized by X-ray single crystal diffraction, elemental analysis, IR spectra and UV-vis spectrum. The crystal belongs to monoclinic with space group P21/n. The molecules are connected via intermolecular O-$H{\cdots}O$ hydrogen bonds into 1D infinite chains. The crystal structure is consolidated by the intramolecular N-$H{\cdots}O$ hydrogen bonds. weak intermolecular C-$H{\cdots}O$ hydrogen bonds link the molecules into intriguing 3D framework. Furthermore, Density functional theory (DFT) calculations of the structure, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the title compound were performed by means of Gaussian 03W package and taking B3LYP/6-31G(d) basis set. The time-dependent DFT calculations have been employed to calculate the electronic spectrum of the title compound, and the UV-vis spectra has been discussed on this basis. The results show that DFT method at B3LYP/6-31G(d) level can well reproduce the structure of the title compound.

Ab initio Study of the Complexes of Trimethyl Ether of Monodeoxycalix[4]arene with Potassium Ion: Cation-π Interactions

  • Lee, Hyung-Dae;Kim, Kwang-Ho;Lee, Ho-Jun;Lee, Sik;Nanbu, Shinkoh;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.508-514
    • /
    • 2006
  • In this study, we have performed ab initio computer simulations to investigate the conformational and complexation characteristics of the trimethyl ether of p-tert-butylmonodeoxycalix[4]arene (6) with a potassium ion. The structures of different conformers of 6 and their potassium complexes were optimized by using ab initio RHF/6-31G and B3LYP/6-31G(d,p) methods. The relative stability of the various conformers of the uncomplexed 6 is in following order: cone (most stable) > 1-partial-cone ~ 2i-partial-cone > 2-partial-cone ~ 1,3-alternate > 3i-partial-cone. However, the relative stability of the conformational complexes of 6 with $K^+$ is in the following order: 2-partial cone ~ 1,3-alternate > cone > 3-partial cone > 1-partial cone (least stable). The highest binding strengths of 2-partial-cone and 1,3-alternate complexes originate from two strong cation-$\pi$ interactions and two strong cation-oxygen interactions in the complex of 6+$K^+$. Due to the cation-$\pi$ interactions, the calculated C-C bond distances in the arenes of the $K^+$-complexes are about 0.0048 $\AA$ longer than the values of their isolated hosts.

Ab Initio Study of the Conformational Isomers of Tetraethyl and Triethyl Esters of Calix[4]arene

  • Choe, Jong-In;Lee, Sang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.553-556
    • /
    • 2004
  • In this study we have performed ab initio computer simulations to investigate the conformational characteristics of the tetraethyl (1) and triethyl ester (2) of p-tert-butylcalix[4]arene. The structures of different conformational isomers for each compound have been optimized using ab initio RHF/6-31G methods. After optimization, B3LYP/6-31+G(d,p) single point calculations of the final structures are done to include the effect of electron correlation and the basis set with diffuse function and polarization function. Relative stability of tetraethyl ester (1) of p-tert-butylcalix[4]arene is in following order: cone (most stable) > partial cone > 1,3- alternate > 1,2-alternate isomer. Relative stability of triethyl ester (2) of p-tert-butylcalix[4]arene is in following order: cone (most stable) > 2-partial cone > 1-partial cone > 3-partial cone ~ 1,3-alternate ~ 1,2- alternate isomer.