Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2311

Conformations and Vibrational Frequencies of a Precursor of Benzovesamicol Analogues Studied by Density Functional Theories  

Park, Jong-Kil (Department of Environmental Engineering, Atmospheric Environment Information Research Center, Inje University)
Choe, Sang Joon (Department of Chemistry, Institute of Basic Science, Inje University)
Publication Information
Abstract
Conformations and vibrational frequencies of the racemic (2RS,3RS)-5-amino-3-(4-phenylpiperazin-1-yl)-1,2,3,4-tetrahydronaphthalen-2-ol-(I) [(2RS,3RS)-(I)], a precursor of benzovesamicol analogues, have been carried out using various DFT methods (M06-2X, B3LYP, B3PW91, PBEPBE, LSDA, and B3P86) with basis sets of 6-31G(d), 6-31+G(d,p), 6-311+G(d,p), 6-311++G(d,p), cc-pVTZ, and TZVP. The LSDA/6-31G(d) level of theory shows the best performance in reproducing the X-ray powder structure. However, the PBEPBE/cc-pVTZ level of theory is the best method to predict the vibrational frequencies of (2RS,3RS)-(I). The potential energy surfaces of racemic pairs (2RS,3RS)-(I) and -(II) are obtained at the LSDA/6-31G(d) level of theory in the gas phase and in water. The results indicate that (2RS,3RS)-(I) are more stable by ~0.75 kcal/mol in energy than (2RS,3RS)-(II) in water, whereas conformer AIIg and BIIg are more stable by ~0.04 kcal/mol than AIg in gas phase. In particular, the hydrogen bond distances between the N of piperazine and the OH of tetrahydronaphthalen become longer in gas, compared with those in the water phase. Vibrational frequencies calculated at the PBEPBE/cc-pVTZ level of theory in the gas phase are larger than those in water, whereas their intensities in the gas phase are weaker than those in water.
Keywords
Benzovesamicol analogues; DFT methods; Conformations; Vibrational frequencies; Diagnosis of Alzheimer's disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Marenich, A. V.; Gramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.   DOI   ScienceOn
2 Merrick, J. P.; Moran, D.; Radom, L. J. Phy. Chem. A 2007, 111, 11683-11700.   DOI   ScienceOn
3 Maiorov, V. N.; Grippen, G. M. J. Mol. Biol. 1994, 235, 625-634.   DOI   ScienceOn
4 Gao, H.; Yan, T.; Zhang, C.; He, H. Mol. Struct. (Theochem) 2008, 857, 38-43.   DOI   ScienceOn
5 Zaho, Y.; Truhlar, D. G. J. Phys. Chem. 2006, 110, 5121-5129.   DOI   ScienceOn
6 Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.   DOI   ScienceOn
7 Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.   DOI
8 (a) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, B46, 6671-6687.
9 (b) Perdew, J. P.; Burk, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533-16539.   DOI   ScienceOn
10 Perdew, J. P.; Burk, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.   DOI   ScienceOn
11 Perdew, J. P.; Burk, K.; Ernzerhof, M. Phy. Rev. Lett. 1997, 78, 1396-1396.
12 Auld, D. S.; Kornecook, T. J.; Bastianetto, S.; Quirion, R. Prog. Neurobiol. 2002, 68, 209-245.   DOI   ScienceOn
13 Efange, S. M. N.; Garland, E.; Staley, J. K.; Khare, A. B.; Mash, D. C. Neurobiol. Aging 1997, 18, 407-413.   DOI   ScienceOn
14 Mulholland, G. K.; Jung, Y. W. J. Labelled Comp. Radiopharm. 1992, 31, 253-259.   DOI   ScienceOn
15 Mulholland, G. K.; Jung, Y. W.; Wieland, D. M.; Kilbourn, M. R.; Kuhl, D. E. J. Labelled Comp. Radiopharm. 1993, 33, 583-591.   DOI   ScienceOn
16 Nicolas, G.; Patrick, E.; Roger, R. F.; David, J. H.; Sylvie, C.; Lucette, G.; Peter, R.; Stefan, E.; Sylvie, B.; Michael, J. F.; Denis, G.; Michael, K. Synapse 2007, 61, 962-979.   DOI   ScienceOn
17 Rogers, G. A.; Parsons, S. M.; Anderson, D. C.; Nilsson, L. M.; Bahr, B. A.; Kornreich, W. D.; Kaufman, B. J. Med. Chem. 1989, 32, 1217-1230.   DOI
18 Assad, T.; Rukiah, M. Acta Cryst. 2011, C67, o378-o381.
19 Park, J. K.; Choe, S. J. J. Porphyrins Phthalocyanines 2013, 17, 376-383.   DOI   ScienceOn
20 Choe, S. J. Bull. Korean Chem. Soc. 2012, 33, 2861-2866.   DOI   ScienceOn
21 Zakharov, A. V.; Girichev, G. V. J. Mol. Struct. (Theochem) 2008, 851, 183-196.   DOI   ScienceOn
22 Choe, S. J.; Shim, Y. K.; Galindev, O. J. Porphyrins Phthalocyanines 2012, 16, 218-226.   DOI   ScienceOn
23 Camacho, C.; Cheng, C.; Witek, H. A.; Lee, Y. P. J. Phys. Chem. A 2010, 114, 11008-11016.   DOI   ScienceOn
24 Gao, H.; Wei, X.; Liu, X.; Yan, T. J. Phys. Chem. B 2010, 114, 4056-4062.   DOI   ScienceOn
25 Alfonso, A.; Grundahl, K.; Duerr, J. S.; Han, H. P.; Rand, J. B. Science 1993, 261, 617-619.   DOI
26 Becke, A. D. J. Chem. Phys. 1996, 104, 1040-1046.   DOI
27 Becke, A. D. J. Chem. Phys. 1997, 107, 8554-8560.   DOI   ScienceOn
28 Perdew, J. P. Phy. Rev. B 1986, 33, 8822-8824.   DOI   ScienceOn
29 Zea-Ponnce, Y.; Mavel, S.; Assaad, T.; Kruse, S. E.; Parson, S. M.; Emond, P.; Chalon, S.; Kruse, S.; Giboureau, N.; Kassiou, M.; Guilloteau, D. Bioorg. Med. Chem. 2005, 13, 745-753.   DOI   ScienceOn
30 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Peterson, G. A.; Nakatsuji, H.; Caricato, M.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Hona, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Lyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dnnenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Oritz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian Inc.: Wallingford, CT, 2009.