• Title/Summary/Keyword: B3LYP/6-31G(d)

Search Result 60, Processing Time 0.018 seconds

DFT Study of Bis(Crown-Ether) Analogue of Troger’s Base Complexed with Bisammonium Ions: Hydrogen Bonds

  • Kim, Kwan-Ho;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1737-1740
    • /
    • 2006
  • The optimized structures and complexation energies of bis(18-crown-6-ether) analogue (2) of Trgers base (1) with a series of primary alkylbisammonium ions have been calculated by DFT B3LYP/6-31G(d,p) method. The calculated complexation efficiency (-142.84 kcal/mol) of 2 for butane-1,4-diylbisammonium guest is better than twice of the value (-61.40 kcal/mol) for butylammonium ion. The multiple hydrogen-bond abilities for the complexes are described as the function of the length of the alkyl substituents of the bisammonium guests with normal-alkyl chain [$-(CH_2)_{n-}$, n = 4-8]. The longer bisammonium guest shows the stronger hydrogen-bonding characterizations (the distance and the quasi-linear angle of the N-H…O) to the host 2 than the shorter bisammonium ions. These calculated results agree with the experimental data of the complexation of 2 with bisammonium salts ([$NH_3(CH_2)_nNH_3$] $Cl_2$).

mPW1PW91 Calculated Conformational Study of Calix[n]arene (n = 4,5,6): Hydrogen Bond (캘릭스[n]아렌(n = 4,5,6)의 이형체들의 상대적인 안정성과 수소결합에 대한 양자역학적 계산연구)

  • Kim, Kwang-Ho;Choe, Jong-In
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.640-652
    • /
    • 2009
  • We have performed mPW1PW91 calculations to investigate the conformational characteristics and hydrogen bonds of p-tert-butylcalix[4]arene (1), p-tert-butylcalix[5]arene (2), calix[6]arene (3) and p-tertbutylcalix[6]arene (4). The structures of the different conformers of 1-3 were optimized by using mPW1PW91/6-31+G(d,p) method. The relative stability of the four conformers of 1 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The relative stability of the conformers of 2 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of the various conformers of 3 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) - 1,2-alternate - 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of the various conformers of 4 were optimized by using the mPW1PW91/6-31G(d,p) method followed by single point calculation of mPW1PW91/6-31+G(d,p). The relative stability of the conformers of 4 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate - partial-cone > 1,2,3-alternate > 1,3,5-alternate > 1,3-alternate. The primary factor affecting the relative stabilities of the various conformers of the 1-4 are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on two different calculation methods (B3LYP and mPW1PW91).

Experimental and ab initio Computational Studies on Dimethyl-(4-{4-{3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenyl)-amine

  • Yuksektepe, Cigdem;Saracoglu, Hanife;Caliskan, Nezihe;Yilmaz, Ibrahim;Cukurovali, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3553-3560
    • /
    • 2010
  • A new hydrazone derivative compound has been synthesized and characterized by IR, $^1H$-NMR, $^{13}C$-NMR and UV-vis. spectroscopy techniques, elemental analysis and single-crystal X-ray diffraction (XRD). The new compound crystallizes in monoclinic space group C2/c. In addition to the crystal structure from X-ray experiment, the molecular geometry, vibrational frequencies and frontier molecular orbitals analysis of the title compound in the ground state have been calculated by using the HF/6-31G(d, p), B3LYP/6-311G(d, p) and B3LYP/6-31G(d, p) methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands. To determine conformational flexibility, molecular energy profile of (1) was obtained by semi-empirical (AM1) calculation with respect to a selected degree of torsional freedom, which was varied from $-180^{\circ}$ to $+180^{\circ}$ in steps of $10^{\circ}$. Molecular electrostatic potential of the compound was also performed by the theoretical method.

DFT Study for p-tert-Butylcalix[4]arene Crown Ether Bridged at the Lower Rim with Pyridyl Unit Complexed with Potassium Ion

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2310-2314
    • /
    • 2007
  • Stable molecular conformations were calculated for the p-tert-butylcalix[4]arene crown ether bridged at the lower rim with pyridyl unit (1) in the various conformers and their potassium-ion complexes. The structures of three distinct conformations have been optimized using DFT B3LYP/6-31G(d,p) method. Relative stability of free host 1 is in following order: cone (most stable) > partial-cone > 1,3-alternate conformer. For two different kinds of complexation mode, the potassium cation in the crown-ether moiety (cr) has much better complexation efficiency than in the benzene-rings (bz) pocket for all three kinds of conformation of host molecule 1. The relative stability of complex (1+K+) in the cr-binding mode is in following order: partial-cone (most stable) ~ cone > 1,3-alternate conformer.

DFT Study for Azobenzene Crown Ether p-tert-Butylcalix[4]arene Complexed with Alkali Metal Ion

  • Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.541-545
    • /
    • 2008
  • Stable molecular isomers were calculated for the azobenzene crown ether p-tert-butylcalix[4]arene (1) in the host and their alkali-metal-ion complexes. The structures of two distinct isomers (cis and trans) have been optimized using DFT B3LYP/6-31G(d,p) method. Trans isomer of 1 is found to be 11.69 kcal/mol more stable than cis analogue. For two different kinds of complexation mode, the alkali-metal-cation in the crown-ether moiety (exo) has much better complexation efficiency than in the benzene-rings (endo) pocket for both isomers of 1. Sodium ion has much better complexation efficiency than potassium ion in all kinds of complexation mode with host 1. The Na+ complexation efficiency of the trans-complex (1) in the exo-binding mode is 8.24 kcal/mol better than cis-exo analogue.

mPW1PW91 Calculated Relative Stabilities and Structures for the Conformers of 1,3-dimethoxy-p-tert-butylthiacalix[4]crown-5-ether (1,3-디메톡시-티아캘릭스[4]크라운-5-에테르의 이형체들의 상대적인 안정성과 구조들에 대한 mPW1PW91 계산 연구)

  • Kim, Kwang-ho;Choe, Jong-In
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.521-529
    • /
    • 2009
  • Molecular structures of the various conformers for the 1,3-dimethoxy-p-tert-butylthiacalix[4] crown-5-ether (3) were optimized by using DFT B3LYP/6 - 31 + G(d,p) and mPW1PW91/6 - 31 + G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the energy differences and structures of eight in/out orientations (cone_oo, cone_oi, pc_oo, pc_io, pc_oi, pc_ii, 13a_oo, 13a_io) of two methoxy groups in three major conformations (cone, partial-cone and 1,3-alternate). The 13a_oo (out-out orientation of the 1,3-alternate conformer) is calculated to be the most stable among eight different conformations of 3, and in accord with the experimental result. The ordering of relative stability resulted from the mPW1PW91/6 - 31 + G(d,p) calculation method is following: 13a_oo > 13a_io$\sim$pc_io$\sim$cone_oo > cone_oi$\sim$pc_oo$\sim$pc_oi > pc_ii.

Full Geometry Optimizations of Bond-Stretch Isomers of C202+ Fullerene Dication by the Hybrid Density Functional B3LYP Methods

  • Lee, Ji-Hyun;Lee, Chang-Hoon;Park, Sung-S.;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.277-280
    • /
    • 2011
  • We studied the relative stability and atomic structure of five $C_{20}^{2+}$ isomers obtained by two-electron ionization of a $C_{20}$ cage (the smallest fullerene). All the isomers are bond-stretch isomers, i.e., they differ in bond length. In particular, in one of the isomers with Ih symmetry, all the bond lengths are equal. Full geometry optimizations of the dipositive ion $C_{20}^{2+}$ were performed using the hybrid density functional (B3LYP/6-31G(d)) methods. All isomers were found to be true minima by frequency analysis at the level of B3LYP/6-31G(d) under the reinforced tight convergence criterion and a pruned (99,590) grid. The zero-point correction energy for the cage bond-stretch isomers was in the increasing order $D_{2h}<C_{2h}<C_2<T_h<I_h$ of $C_{20}^{2+}$. The energy difference among the isomers of cage dipositive ions was less than that among neutral cage isomers. Our results suggest that these isomers show bond-stretch isomerism and that they have an identical spin state and an identical potential energy curve. Although the predominant electronic configurations of the isomers are similar, the frontier orbital characteristics are different, implying that we could anticipate an entirely different set of characteristic chemical reactions for each type of HOMO and LUMO.

DFT Conformational Study of Calix[5]arene and Calix[4]arene: Hydrogen Bond

  • Kim, Kwang-Ho;Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1893-1897
    • /
    • 2008
  • We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the p-tert-butylcalix[5]arene (1) and p-tert-butylcalix[4]arene (2). The structures of different conformers of 1 were optimized by using B3LYP/6-31+G(d,p) method. The relative stability of the various conformers of 1 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of four conformers of 2 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The primary factor affecting the relative stabilities of the various conformers of the 1 and 2 are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on different calculation methods.

Theoretical Study of the N-(2,5-Methylphenyl)salicylaldimine Schiff Base Ligand: Atomic Charges, Molecular Electrostatic Potential, Nonlinear Optical (NLO) Effects and Thermodynamic Properties

  • Zeyrek, Tugrul C.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.461-471
    • /
    • 2013
  • Optimized geometrical structure, atomic charges, molecular electrostatic potential, nonlinear optical (NLO) effects and thermodynamic properties of the title compound N-(2,5-methylphenyl)salicylaldimine (I) have been investigated by using ab initio quantum chemical computational studies. Calculated results showed that the enol form of (I) is more stable than keto form. The solvent effect was investigated for obtained molecular energies, hardneses and the atomic charge distributions of (I). Natural bond orbital and frontier molecular orbital analysis of the title compound were also performed. The total molecular dipole moment (${\mu}$), linear polarizability (${\alpha}$), and first-order hyperpolarizability (${\beta}$) were calculated by B3LYP method with 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) and 6-311++G(d,p) basis sets to investigate the NLO properties of the compound (I). The standard thermodynamic functions were obtained for the title compound with the temperature ranging from 200 to 450 K.

DFT Calculated Structures and IR Spectra of the Conformers of para-Bromocalix[4]aryl Derivatives

  • Ahn, Sangdoo;Lee, Dong-Kuk;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3514-3520
    • /
    • 2014
  • Molecular structures of the various conformers of para-bromocalix[4]aryl derivatives 1-4 were optimized using the DFT B3LYP calculation method. The total electronic and Gibbs free energies and normal vibrational frequencies of the different structures (CONE, partial cone (PACO), 1,2-Alternate(1,2-A) and 1,3-Alternate(1,3-A)) were calculated from the four kinds of para-bromocalix[4]aryl derivatives. The B3LYP/6-31G(d,p) calculations suggested the following: 1(PACO) is the most stable among four conformers of 1; 2(CONE) is the most stable among five conformers of 2; 3(PACO) is the most stable among four conformers of 3; 4(1,3-A) is the most stable among four conformers of 4. All the most stable structures optimized by the B3LYP calculation method were in accordance with the experimental crystal structures of 1-4. The calculated IR spectra of the various conformers (CONE, PACO, 1,2-A and 1,3-A) of 1-4 were compared.