Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.12.3514

DFT Calculated Structures and IR Spectra of the Conformers of para-Bromocalix[4]aryl Derivatives  

Ahn, Sangdoo (Department of Chemistry, Chung-Ang University)
Lee, Dong-Kuk (Department of Fine Chemistry & Convergence Institute of Biomedical and Biomaterials, Seoul National University of Science and Technology)
Choe, Jong-In (Department of Chemistry, Chung-Ang University)
Publication Information
Abstract
Molecular structures of the various conformers of para-bromocalix[4]aryl derivatives 1-4 were optimized using the DFT B3LYP calculation method. The total electronic and Gibbs free energies and normal vibrational frequencies of the different structures (CONE, partial cone (PACO), 1,2-Alternate(1,2-A) and 1,3-Alternate(1,3-A)) were calculated from the four kinds of para-bromocalix[4]aryl derivatives. The B3LYP/6-31G(d,p) calculations suggested the following: 1(PACO) is the most stable among four conformers of 1; 2(CONE) is the most stable among five conformers of 2; 3(PACO) is the most stable among four conformers of 3; 4(1,3-A) is the most stable among four conformers of 4. All the most stable structures optimized by the B3LYP calculation method were in accordance with the experimental crystal structures of 1-4. The calculated IR spectra of the various conformers (CONE, PACO, 1,2-A and 1,3-A) of 1-4 were compared.
Keywords
DFT B3LYP; Conformer; IR spectrum; Bromocalix[4]aryl derivatives;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shinkai, S.; Iwamoto, K.; Araki, K.; Matsuda, T. Chem. Commun. 1990, 1263.
2 Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods (Second Edition); Gaussian, Inc. Pittsburgh, PA, 1996; p 63.
3 Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061.   DOI
4 GaussView, Version 5, Dennington, Roy; Keith, Todd; Millam, John. Semichem Inc., Shawnee Mission, KS, 2009.
5 Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D. N.; van Hummel, G. J.; Ugazzoli, F.; Andreetti, G. D. J. Am. Chem. Soc. 1990, 112, 4165.   DOI
6 Groenen, L. C.; van Loon, J.-D.; Verboom, W.; Harkema, S.; Casnati, A.; Ungaro, R.; Pochini, A.; Ugozzoli, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 2385.   DOI
7 Hay, B. P.; Nicholas, J. B.; Feller, D. J. Am. Chem. Soc. 2000, 122, 10083.   DOI   ScienceOn
8 Minn, H. H.; Chang, S. K.; No, K. T. Theor. Chim. Acta 1989, 75, 233.   DOI
9 Bernardino, R. J.; Costa Cabral, B. J.; Pereira, J. L. C. Theochem. 1998, 455, 23.   DOI
10 Scheerder, J.; Vreekamp, R. H.; Engbersen, J. F. J.; Verboom, W.; van Duynhoven, J. P. M.; Reinhoudt, D. N. J. Org. Chem. 1996, 61, 3476.   DOI   ScienceOn
11 Fischer, S.; Grootenhuis, P. D. J.; Groenen, L. C.; van Hoorn, W. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Karplus, M. J. Am. Chem. Soc. 1995, 117, 1611.   DOI
12 Harada, T.; Shinkai, S. J. Chem. Soc., Perkin Trans. 2 1995, 2231.
13 Thondorf, I.; Brenn, J.; Brandt, W.; Bohmer, V. Tetrahedron Lett. 1995, 36, 6665.   DOI
14 Iwamoto, K.; Ikeda, A.; Araki, K.; Harada, T.; Shinkai, S. Tetrahedron 1993, 49, 9937.   DOI
15 Harada, T.; Rudziński, J. M.; Osawa, E.; Shinkai, S. Tetrahedron 1993, 49, 5941.   DOI   ScienceOn
16 HyperChem Release 8, Hypercube, Inc.: Waterloo, Ontario, Canada, 2009.
17 Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465.
18 Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Inclusion Compounds; Oxford University Press: Oxford, 1991; vol. 4-5.
19 Cram, D. J. Science 1983, 219, 1177.   DOI   ScienceOn
20 Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Inclusion Compounds; Academic Press: London, 1984; vol. 1-3.
21 Perrin, M.; Dehler, O., Topics in Inclusion Science, In: Vicens, J., Böhmer, V., Eds.; Calixarenes: A Versatile Class of Macrocyclic Compounds, Kluwer, Dordrecht, 1991; pp 65-85.
22 Pochini, A.; Ungaro, R., Calixarenes and Related Hosts, In: Vogtle, F., Ed.; Comprehensive Supramolecular Chemistry; Pergamon: Oxford, 1996; vol. 2, pp 103-142.
23 Hamada, F.; Bott, S. G.; William, G.; Coleman, A. W.; Zhang, H.; Atwood, J. L. J. Incl. Phenom. Mol. Reco. 1990, 9, 195.   DOI
24 Maharaj, F.; Craig, D. C.; Scudder, M. L.; Bishop, R. N. K. J. Incl. Phenom. Macrocyl. Chem. 2007, 59, 17.   DOI
25 Yu, F.-J.; Hu, X.-J.; Yang, H.-J.; Wang, R.-J. J. Kristallogr.-New Cryst. Struct. 2005, 220, 460.
26 Clark, T. E.; Makha, M.; Sobolev, A. N.; Rohrs, H.; Atwood, J. L.; Raston, C. L. Chem. Eur. J. 2008, 14, 3931.   DOI
27 Iwamoto, K; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955.   DOI
28 Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 2008.
29 Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vogtle, F., Eds.; Comprehensive Supramolecular Chemistry; Pergamon: Oxford, 1996; vol. 1-11.
30 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009.