• Title/Summary/Keyword: B16-F10 melanoma

Search Result 415, Processing Time 0.022 seconds

Inhibitory Effects of Fractions from Glycine soja Siebold et Zucc. on Melanogenesis in B16F10 Melanoma Cells (B16F10 멜라닌 세포에서 약콩(Glycine soja Siebold et Zucc.) 분획 추출물의 멜라닌 생성 저해 효과)

  • Kim, Bo Ae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • This study was performed to cytotoxicity, tyrosinase inhibition activity, intracellular melanin contents to verify the whitening effect of fraction from Glycine soja Siebold et Zucc. (G. soja). Using western blotting, tyrosinase expression in B16F10 melanoma cells and expression levels of tyrosinase related protein-1 (TRP-1) and protein-2 (TRP-2) were examined. As a result, all of the fractions showed a high cell viability over 82% at the concentrations of 0.125, 0.25, 0.5, 2.0 mg/mL. When the whitening effects of fractions from G. soja were tested using B16F10 melanoma cells treated with the ${\alpha}$-melanocyte stimulating hormone (${\alpha}-MSH$), the EtOAc fractions inhibited tyrosinase and melanogenesis effectively. The result of protein expression measurement using western blot showed that TRP-1, TRP-2 and tyrosinase protein expression in B16F10 melanoma cells treated with extracts decreased. Therefore, it is concluded that the fractions from G. soja have whitening effect by inhibiting protein related melanogenesis.

Synergistic Effects of Bee Venom and Natural Killer Cells on B16F10 Melanoma Cell Growth Inhibition through IL-4-mediated Apoptosis

  • Sin, Dae Chul;Kang, Mi Suk;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Objectives : We investigated the synergistic effects of bee venom (BV) and natural killer (NK) cells on B16F10 melanoma cell apoptosis mediated by IL-4. Methods : We performed a cell viability assay to determine whether BV can enhance the inhibitory effect of NK-92MI cells on the growth of B16F10 melanoma cells, and western blot analysis to detect changes in the expression of IL-4, $IL-4R{\alpha}$, and other apoptosis-related proteins. EMSA was performed to observe the activity of STAT6. To confirm that the inhibitory effect of BV and NK cells was mediated by IL-4, the above tests were repeated after IL-4 silencing by siRNA (50 nM). Results : B16F10 melanoma cells co-cultured with NK-92MI cells and simultaneously treated by BV ($5{\mu}g/ml$) showed a higher degree of proliferation inhibition than when treated by BV ($5{\mu}g/ml$) alone or co-cultured with NK-92MI cells alone. Expression of IL-4, $IL-4R{\alpha}$, and that of other pro-apoptotic proteins was also enhanced after co-culture with NK-92MI cells and simultaneous treatment with BV ($5{\mu}g/ml$). Furthermore, the expression of anti-apoptotic bcl-2 decreased, and the activity of STAT6, as well as the expression of STAT6 and p-STAT6 were enhanced. IL-4 silencing siRNA (50 nM) in B16F10 cells, the effects of BV treatment and NK-92MI co-culture were reversed. Conclusion : These results suggest that BV could be an effective alternative therapy for malignant melanoma by enhancing the cytotoxic and apoptotic effect of NK cells through an IL-4-mediated pathway.

Antioxidant Activities and Melanogenesis Inhibitory Effects of Terminalia chebula in B16/F10 Melanoma Cells

  • Lee, Hyun-Sun;Cho, Hye-Jin;Lee, Kwang-Won;Park, Sung-Sun;Seo, Ho-Chan;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.3
    • /
    • pp.213-220
    • /
    • 2010
  • To examine the potential of Terminalia chebula as a whitening agent, we measured antioxidant activity using DPPH$\cdot$, ABTS${\cdot}^+$ assays and ferric-reducing antioxidant power (FRAP) assays, and depigmenting activity using B16F10 melanoma cells. The intracellular reactive oxygen species (ROS) level was monitored by $H_2DCFDA$ fluorescence labeling, and melanin contents in B16F10 melanoma cells by 960 $J/m^2$ dose of UVA-induced oxidative stress. The radical-scavenging activities of T. chebula extract (TCE) were measured in terms of $EC_{50}$ values using DPPH$\cdot$, ABTS${\cdot}^+$ assays and FRAP value were 280.0 ${\mu}g/mL$, 42.2 ${\mu}g/mL$ and 113.1 ${\mu}mol$ $FeSO_4{\cdot}7H_2O/g$, respectively. We found that ROS and melanin concentrations were reduced by TCE treatments of 25 ${\mu}g/mL$ under UVA-induced oxidative stress. Tyrosinase activity and melanin contents in $\alpha$-melanocyte stimulating hormone (MSH)-induced melanoma cells both decreased dose-dependently in the treatment groups. TCE similarly reduced melanogenesis in B16F10 melanoma cells stimulated by $\alpha$-MSH as compared to arbutin as a positive control. T. chebula may prove to be a useful therapeutic agent for hyperpigmentation and an effective component in skin whitening and.or lightening cosmetics.

Inhibitory Effects of Latilactobacillus curvatus BYB3 Cell-Free Extract on Human Melanoma B16F10 Cells and Tumorigenic Mice

  • Dingyun Li;Xing Wang;Dong-June Park;Dong Hun Lee;Sejong Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.589-595
    • /
    • 2024
  • Latilactobacillus curvatus BYB3 (BYB3) is a species of lactic acid bacteria, formerly named Lactobacillus curvatus, which is isolated from kimchi. In this study, the effect of BYB3, Lactobacillus rhamnosus GG, and Lactobacillus acidophilus GP1B strain extracts at various concentrations was examined on B16F10, a mouse melanoma cell line. Cell viability was examined via MTT assay, and the results indicated that compared to the other two probiotics, BYB3 significantly decreased the total percentages of viable cells. The effects of BYB3 on cell migration and proliferation in B16F10 cells were evaluated using wound healing mobility and proliferation assays, respectively; the results indicated that BYB3 inhibits cell migration and proliferation in a concentration-dependent manner. Using human dermal fibroblast cells to investigate BYB3 extract in vivo had no effect on skin-related cells. Nonetheless, the BYB3 extract inhibited tumor growth in a mouse model, as demonstrated by liver slices. Therefore, this suggests that using BYB3 extract to inhibit melanoma may be a novel approach.

An Ester Extract of Cochinchina Momordica Seeds Induces Differentiation of Melanoma B16 F1 Cells via MAPKs Signaling

  • Zhao, Lian-Mei;Han, Li-Na;Ren, Feng-Zhi;Chen, Shu-Hong;Liu, Li-Hua;Wang, Ming-Xia;Sang, Mei-Xiang;Shan, Bao-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3795-3802
    • /
    • 2012
  • Cochinchina momordica seeds (CMS) have been widely used due to antitumor activity by Mongolian tribes of China. However, the details of the underlying mechanisms remain unknown. In the present study, we found that an EtOAc (ethyl ester) extract of CMS (CMSEE) induced differentiation and caused growth inhibition of melanoma B16 F1 cells. CMSEE at the concentration of $5-200{\mu}g/ml$ exhibited strongest anti-proliferative effects on B16 F1 cells among other CMS fractions (water or petroleum ether). Moreover, CMSEE induced melanoma B16 F1 cell differentiation, characterized by dendrite-like outgrowth, increasing melanogenesis production, as well as enhancing tyrosinase activity. Western blot analysis showed that sustained phosphorylation of p38 MAP accompanied by decrease in ERK1/2 and JNK dephosphorylation were involved in CMSEE-induced B16 F1 cell differentiation. Notably, 6 compounds that were isolated and identified may be responsible for inducing differentiation of CMSEE. These results indicated that CMSEE contributes to the differentiation of B16 F1 cells through modulating MAPKs activity, which may throw some light on the development of potentially therapeutic strategies for melanoma treatment.

Inhibitory effect of Fucofuroeckol-A from Eisenia bicyclis on tyrosinase activity and melanin biosynthesis in murine melanoma B16F10 cells

  • Shim, Kil Bo;Yoon, Na Young
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.11
    • /
    • pp.35.1-35.7
    • /
    • 2018
  • Background: The aim of this study was to investigate the in vitro inhibitory effects of Fucofuroeckol-A isolated from Eisenia bicyclis against tyrosinase activity and 3-isobutyl-1-methylxanthine (IBMX)-induced melanin biosynthesis in B16F10 melanoma cells. Result: Among the ethanolic (EtOH) extract of E. bicyclis and its organic solvent fractions, the ethyl acetate (EtOAc) soluble fraction showed a noticeable inhibitory effect on mushroom tyrosinase with an $IC_{50}$ value of $37.6{\pm}0.1{\mu}g/mL$. Repeated column chromatography of the active EtOAc fraction resulted in the isolation of Fucofuroeckol-A. It evidenced more potent tyrosinase inhibitory effect with an $IC_{50}$ value of $11.4{\pm}1.4{\mu}M$ than arbutin ($IC_{50}=1076.6{\pm}44.3{\mu}M$), which was used as a positive control. Lineweaver-Burk plots suggest that Fucofuroeckol-A plays as a noncompetitive inhibitor against tyrosinase. Furthermore, we have evaluated the inhibitory effects of Fucofuroeckol-A on IBMX-induced melanin formation in B16F10 melanoma cells. Fucofuroeckol-A ($12.5-100{\mu}M$) exhibited a significant inhibition of melanin production in the melanoma cells. Conclusion: In the present study, we suggested that Fucofuroeckol-A might prove possibility as a novel inhibitor of melanin biosynthesis in cosmetic applications.

Inhibitory Effects of Polyopes affinis Ethanol Extract on Melanogenesis in B16F10 Melanoma Cells (참까막살 에탄올 추출물이 B16F10 흑색종 세포에서의 멜라닌합성에 미치는 영향연구)

  • Kim, Hyang Suk;Choi, Yung Hyun;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.972-976
    • /
    • 2019
  • Polyopes affinis is a kind of red algae found in the South coast and near Jeju Island of Korea. The purpose of this study was to investigate the effects of Polyopes affinis ethanol extract (PAEE) on melanogenesis in ${\alpha}-MSH$ stimulated B16F10 melanoma cells. Melanoma cells were cultured for 72 hr treated with PAEE. Total melanin content and the activity of tyrosinase, a key enzyme in melanogenesis, were measured. When the melanin content in B16F10 melanoma cells was tested, PAEE was decreased in a dose-dependent manner: treatment with 100, 300, and $500{\mu}g/ml$ caused 25%, 30%, and 35% reduction, respectively. Treatment of 100, 300, and $500{\mu}g/ml$ of PAEE caused 6%, 12%, and 21% reduction of tyrosinase activities in B16F10 melanoma cells. Also, PAEE suppressed the expression of tyrosinase, tyrosinase-related protein-1, tyrosinase-related protein-2, and melanocyte-inducing transcription factor in B16F10 melanoma cells. A concentration of $500{\mu}g/ml$ of PAEE showed a greater decrease in tyrosinase activity, melanin content, and melanogenic enzyme protein expression. These results indicate that PAEE inhibits melanin synthesis and tyrosinase activity, and Polyopes affinis ethanol extract could be used as a functional whitening agent.

The effects of green tea (Camellia sinensis) flower extract on melanin synthesis in B16-F10 melanoma cells

  • Dissanayake, Chanuri-Yashara;Moon, Hae-Hee;Yang, Kyeong-Mi;Lee, Younjae;Han, Chang-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.2
    • /
    • pp.65-72
    • /
    • 2018
  • The present study observed the effects of a green tea (Camellia sinensis) flower extract (GTFE) on melanin synthesis in B16-F10 melanoma cells. GTFE exhibited antioxidant activity on 2,2-diphenyl-1-picrylhydrazyl and inhibited mushroom tyrosinase activity in a dose-dependent manner. Furthermore, GTFE significantly diminished ${\alpha}-melanocyte$ stimulating hormone (${\alpha}-MSH$) stimulated cellular melanin content and tyrosinase activity throughout the concentration range evaluated. Based on RNA sequencing analysis, differential gene expression patterns observed in ${\alpha}-MSH$ stimulated B16-F10 melanoma cells were normalized by the addition of GTFE. In particular, the expression levels of melanoregulin and tyrosinase genes which are key regulating genes in melanin synthesis were up-regulated by 3.5 and 3 fold respectively by ${\alpha}-MSH$, and were normalized to control levels by the addition of GTFE. The results suggest that GTFE inhibits melanin synthesis in ${\alpha}-MSH$ stimulated B16-F10 melanoma cells by normalizing expression of genes that are essential for melanin synthesis. Overall, the results suggest that GTFE could be applied in the development of a whitening agent for the treatment of dermal hyperpigmentation.

Salicylamide Enhances Melanin Synthesis in B16F1 Melanoma Cells

  • Ito, Yusuke;Sato, Kazuomi
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.445-451
    • /
    • 2021
  • Salicylamide, a non-steroidal anti-inflammatory drug (NSAID), is used as an analgesic and antipyretic agent. We have previously shown that several NSAIDs have anti-melanogenic properties in B16F1 melanoma cells. In contrast, we have found that salicylamide enhances melanin contents in B16F1 melanoma cells; however, the underlying mechanism is not known. Therefore, we investigated the mechanism through which salicylamide stimulates melanogenesis. Interestingly, salicylamide enhanced diphenolase activity in a cell-free assay. Western blotting and real-time RT-PCR revealed that salicylamide increased tyrosinase expression via transcriptional activation of the Mitf gene. Together, our results indicate that salicylamide could be used as an anti-hypopigmentation agent for skin and/or hair.

Inhibitory Effects of Fucoidan on Melanin Synthesis and Tyrosinase Activity (Fucoidan의 멜라닌 합성과 tyrosinase 활성도 억제 효과)

  • Jung, Sook-Hee;Ku, Mi-Jung;Moon, Hee-Jung;Yu, Byeng-Chul;Jeon, Man-Joong;Lee, Yong-Hwan
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • Melanogenesis is a physiological process that results in the synthesis of melanin pigments. Tyrosinase is a key enzyme for melanin biosynthesis, and hyperpigmentation disorders are associated with abnormal accumulation of melanin pigments, which can be improved by treatment with depigmenting agents. Among the possible melanin-reducing compounds, tyrosinase inhibitors are most promising for preventing and treating pigmentation disorder and are used as skin-whitening agents in the cosmetic industry. In the present study, the effects of fucoidan on melanogenesis and tyrosinase activity of B16F10 melanoma cells were investigated. Melanin synthesis and tyrosinase activity in B16F10 melanoma cells were decreased in a dose-dependent manner by fucoidan. Melanin production and tyrosinase activity in B16F10 melanoma cells stimulated by a-melanocyte stimulating hormone (a-MSH) were inhibited by fucoidan with a dose-dependent manner compared to control. Fucoidan inhibited tyrosinase activity of B16F10 melanoma cells with a dose-dependent manner as assessed by 3,4-dihydroxyphenylalanine (DOPA) staining. In conclusion, these findings indicate that fucoidan, which inhibit melanin synthesis and tyrosinase activity, is an effective skin-whitening agent.