Browse > Article
http://dx.doi.org/10.3746/jfn.2010.15.3.213

Antioxidant Activities and Melanogenesis Inhibitory Effects of Terminalia chebula in B16/F10 Melanoma Cells  

Lee, Hyun-Sun (Department of Food and Nutrition & Institute of Health Science, Korea University)
Cho, Hye-Jin (Department of Food and Nutrition, Korea University)
Lee, Kwang-Won (Division of Food Bioscience & Technology, Korea University)
Park, Sung-Sun (Department of Food and Nutrition, Sungshin Women's University)
Seo, Ho-Chan (Department of Brain Education, University of Brain Education)
Suh, Hyung-Joo (Department of Food and Nutrition, Korea University)
Publication Information
Preventive Nutrition and Food Science / v.15, no.3, 2010 , pp. 213-220 More about this Journal
Abstract
To examine the potential of Terminalia chebula as a whitening agent, we measured antioxidant activity using DPPH$\cdot$, ABTS${\cdot}^+$ assays and ferric-reducing antioxidant power (FRAP) assays, and depigmenting activity using B16F10 melanoma cells. The intracellular reactive oxygen species (ROS) level was monitored by $H_2DCFDA$ fluorescence labeling, and melanin contents in B16F10 melanoma cells by 960 $J/m^2$ dose of UVA-induced oxidative stress. The radical-scavenging activities of T. chebula extract (TCE) were measured in terms of $EC_{50}$ values using DPPH$\cdot$, ABTS${\cdot}^+$ assays and FRAP value were 280.0 ${\mu}g/mL$, 42.2 ${\mu}g/mL$ and 113.1 ${\mu}mol$ $FeSO_4{\cdot}7H_2O/g$, respectively. We found that ROS and melanin concentrations were reduced by TCE treatments of 25 ${\mu}g/mL$ under UVA-induced oxidative stress. Tyrosinase activity and melanin contents in $\alpha$-melanocyte stimulating hormone (MSH)-induced melanoma cells both decreased dose-dependently in the treatment groups. TCE similarly reduced melanogenesis in B16F10 melanoma cells stimulated by $\alpha$-MSH as compared to arbutin as a positive control. T. chebula may prove to be a useful therapeutic agent for hyperpigmentation and an effective component in skin whitening and.or lightening cosmetics.
Keywords
Terminalia chebula; B16F10 melanoma cell; ultraviolet; skin whitening; melanogenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arunga ET, Shimizub K, Kondo R. 2007. Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells. Chem Biodivers 4: 2166-2171.   DOI   ScienceOn
2 Wu LC, Chang LH, Chen SH, Fan NC, Ho JA. 2009. Antioxidant activity and melanogenesis inhibitory effect of the acetonic extract of Osmanthus fragrans: A potential natural and functional food flavor additive. LWT-Food Sci Technol 42: 1513-1519.   DOI   ScienceOn
3 Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76-85.   DOI   ScienceOn
4 Tsuboi T, Kondoh H, Hiratsuka J, Mishima Y. 1998. Enhanced melanogenesis induced by tyrosinase genetransfer increases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma. Pigment Cell Res 11: 275-282.   DOI   ScienceOn
5 Surveswaran S, Cai Y-Z, Corke H, Sun M. 2007. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102: 938-953.   DOI   ScienceOn
6 Perluigi M, De Marco F, Foppoli C, Coccia R, Blarzino C, Luisa Marcante M, Cini C. 2003. Tyrosinase protects human melanocytes from ROS-generating compounds. Biochem Biophys Res Commun 305: 250-256.   DOI   ScienceOn
7 Hu ZM, Zhou Q, Lei TC, Ding SF, Xu SZ. 2009. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: Biosafety as skin whitening agents. J Dermatol Sci 55: 179-184.   DOI   ScienceOn
8 Quang DN, Hashimoto T, Nukada M, Yamamoto I, Tanaka M, Asakawa Y. 2003. Antioxidant activity of curtisians I-L from the inedible mushroom Paxillus curtisii. Planta Med 69: 1063-1066.   DOI   ScienceOn
9 Wang LL, Xiong YL. 2005. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J Agric Food Chem 53: 9186-9192.   DOI   ScienceOn
10 Almajano MP, Carbo R, Delgado ME, Gordon MH. 2007. Effect of pH on the antimicrobial activity and oxidative stability of oil-in-water emulsions containing caffeic acid. J Food Sci 72: C258-263.   DOI   ScienceOn
11 Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51: 6657-6662.   DOI   ScienceOn
12 Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63.   DOI   ScienceOn
13 Roffey BW, Atwal AS, Johns T, Kubow S. 2007. Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells. J Ethnopharmacol 112: 77-84.   DOI   ScienceOn
14 Khazaeli P, Goldoozian R, Sharififar F. 2009. An evaluation of extracts of five traditional medicinal plants from Iran on the inhibition of mushroom tyrosinase activity and scavenging of free radicals. Int J Cosmet Sci 31: 375-381.   DOI   ScienceOn
15 Wang H, Joseph JA. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27: 612-616.   DOI   ScienceOn
16 Sato Y, Oketani H, Singyouchi K, Ohtsubo T, Kihara M, Shibata H, Higuti T. 1997. Extraction and purification of effective antimicrobial constituents of Terminalia chebula RETS. against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 20: 401-404.   DOI   ScienceOn
17 Saleem A, Husheem M, Harkonen P, Pihlaja K. 2002. Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula Retz. fruit. J Ethnopharmacol 81: 327-336.   DOI   ScienceOn
18 Svobodov A, Rambouskov J, Walterov D, Vostalov J. 2008. Bilberry extract reduces UVA-induced oxidative stress in HaCaT keratinocytes: A pilot study. BioFactors 33: 249-266.   DOI
19 Lee HS, Jung SH, Yun BS, Lee KW. 2007. Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes. Arch Toxicol 81: 211-218.   DOI
20 Schraermeyer U, Kopitz JG, Peters S, Henke-Fahle S, Blitgen-Heinecke P, Kokkinou D, Schwarz T, Bartz-Schmidt KU. 2006. Tyrosinase biosynthesis in adult mammalian retinal pigment epithelial cells. Exp Eye Res 83: 315-321.   DOI   ScienceOn
21 Rigopoulos D, Gregoriou S, Katsambas A, 2007. Hyperpigmentation and melasma. J cosmet Dermatol 6: 195-202.   DOI   ScienceOn
22 Burdock GA, Soni MG, Carabin IG. 2001. Evaluation of health aspects of kojic acid in food. Regul Toxicol Pharmacol 33: 80-101.   DOI   ScienceOn
23 Rendon M, Berneburg M, Arellano I, Picardo M. 2006 Treatment of melasma. J Am Acad Dermatol 54: S272-S281.   DOI   ScienceOn
24 Petkou D, Diamantidis G, Vasilakakis M. 2002. Arbutin oxidation by pear (Pyrus communis L.) peroxidases. Plant Sc 162: 115-119.   DOI   ScienceOn
25 Saleh HH, Rashad H, Khafaga S. 1952. Pharmacological action of Terminalia chebula. Egypt J Psychiatry 35: 763-771.
26 Schallreuter KU, Wood JM. 1989. Free radical reduction in the human epidermis. Free Radic Biol Med 6: 519-532.   DOI   ScienceOn
27 Lee HS, Won NH, Kim KH, Lee H, Jun W, Lee KW. 2005. Antioxidant effects of aqueous extract of Terminalia chebula in vivo and in vitro. Biol Pharm Bull 28: 1639-1644.   DOI   ScienceOn
28 Marrot L, Meunier JR. 2008. Skin DNA photodamage and its biological consequences. J Am Acad Dermatol 58: S139-S148.   DOI   ScienceOn