• Title/Summary/Keyword: B10 Life

Search Result 4,604, Processing Time 0.042 seconds

SAMD4B, a novel SAM-containing protein, inhibits AP-1-, p53- and p21-mediated transcriptional activity

  • Luo, Na;Li, Guan;Li, Yongqing;Fan, Xiongwei;Wang, Yuequn;Ye, Xiangli;Mo, Xiaoyan;Zhou, Junmei;Yuan, Wuzhou;Tan, Ming;Xie, Huaping;Ocorr, Karen;Bodmer, Rolf;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.355-362
    • /
    • 2010
  • The sterile alpha motif (SAM) is a putative protein interaction domain involved in a wide variety of biological processes. Here we report the identification and characterization of a novel gene, SAMD4B, which encodes a putative protein of 694 amino acids with a SAM domain. Northern blot and RT-PCR analysis showed that SAMD4B is widely expressed in human embryonic and adult tissues. Transcriptional activity assays show SAMD4B suppresses transcriptional activity of L8G5-luciferase. Over-expression of SAMD4B in mammalian cells inhibited the transcriptional activities of activator protein-1 (AP-1), p53 and p21, and the inhibitory effects can be relieved by siRNA. Deletion analysis indicates that the SAM domain is the main region for transcriptional suppression. The results suggest that SAMD4B is a widely expressed gene involved in AP-1-, p53- and p21-mediated transcriptional signaling activity.

Crystal Structure of LysB4, an Endolysin from Bacillus cereus-Targeting Bacteriophage B4

  • Hong, Seokho;Son, Bokyung;Ryu, Sangryeol;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.79-86
    • /
    • 2019
  • Endolysins are bacteriophage-derived enzymes that hydrolyze the peptidoglycan of host bacteria. Endolysins are considered to be promising tools for the control of pathogenic bacteria. LysB4 is an endolysin produced by Bacillus cereus-infecting bacteriophage B4, and consists of an N-terminal enzymatic active domain (EAD) and a C-terminal cell wall binding domain (CBD). LysB4 was discovered for the first time as an L-alanoyl-D-glutamate endopeptidase with the ability to breakdown the peptidoglycan among B. cereus-infecting phages. To understand the activity of LysB4 at the molecular level, this study determined the X-ray crystal structure of the LysB4 EAD, using the full-length LysB4 endolysin. The LysB4 EAD has an active site that is typical of LAS-type enzymes, where $Zn^{2+}$ is tetrahedrally coordinated by three amino acid residues and one water molecule. Mutational studies identified essential residues that are involved in lytic activity. Based on the structural and biochemical information about LysB4, we suggest a ligand-docking model and a putative endopeptidase mechanism for the LysB4 EAD. These suggestions add insight into the molecular mechanism of the endolysin LysB4 in B. cereus-infecting phages.

A Study on the Interrelation Between Serum Cholesterol level and Essential Hypertension, Liver Disease and Body weight (혈청(血淸)콜레스테롤 농도(濃度)와 본능성고혈압(本態性高血壓), 간기능장애(肝機能障碍) 및 체중(體重)과의 상관관계(相關關係)에 대한 검토(檢討))

  • Kim, Myung-Hae
    • The Journal of the Korean life insurance medical association
    • /
    • v.2 no.1
    • /
    • pp.135-142
    • /
    • 1985
  • For the past 10 years, the socioeconomic status of our country was markedly improved. Accordingly, our foodintake patterns and other alt parts are preparing to blance with developed countries. Especially, be westernizing or improving our foodintake patterns, we intake much fat diet(animal food) while our physical activities decrease and alcohol consumtion's population, smoking population gradually increase. For such reasons, the population of obese tendency and cardiovascular diseases are increased. According to recent reports, among all death causes in our country, cardiovascular diseases(hypertension, hypertensive cardiovascular diseases, ischemic heart diseases) occupyd top rank, we know. I(the author) studied the inter-relation between serum cholesterol level which is the important factor of the cardiovascular diseases and essential hypertension liver diseases, hyperglycemia, some cardiac problems which are main decline causes in life insurance's medical assessment, and body weight distribution. Studied samples were selected on 4,313 cases(male; 1,791, female; 2,522) who were tested liver function test from June, 11th, 1980 to Dec., 31st, 1983 on our medical department's laboratory. I selected two groups in those cases: one group was serum cholesterol level 180mg/dl over(11% of whole LFT examed cases: No=502 cases), the other group was serum cholesterol level 120-160mg/dl(No= 502 cases). For convenience, the group of serum cholesterol level 180mg/dl over was "A" the other group was "B", I described. All examed persons of LFT were resident m Tae-Jon city in that time. On the result, 1) Decline rate is 10.5% on the "A" group, 5.9% on the "B" group. "A" group reveals 1.8 times higher than "B" group. 2) On decline causes, Essential hypertension is 4.0 times higher on the "A" group than "B", liver function's abnormalities are 2.0 times higher on "A" group than "B" and other diseases are same on "A" and "B". On the "A" group, essential hypertension is considerably higher than "B" group. 3) On the body weight distribution, the cases of 70kg(B.W.) over is 19.7% on "A", 10.6% on "B" group. Obese tendency is 1.8 folds higher on "A" group than "B" group. Studing the result, we find high serum cholesterol concentration is closely related with essential hypertension, obese tendency and liver function's abnormalities on the life insurance's medical examination part, also. On the future, we will more carefully consider the serum cholesterol concentration on our medical examnination and assessment of life insurance, I think.

  • PDF

Synergistic efficacy of LBH and αB-crystallin through inhibiting transcriptional activities of p53 and p21

  • Deng, Yun;Li, Yongqing;Fan, Xiongwei;Yuan, Wuzhou;Xie, Huaping;Mo, Xiaoyang;Yan, Yan;Zhou, Junmei;Wang, Yuequn;Ye, Xianli;Wan, Yongqi;Wu, Xiushan
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.432-437
    • /
    • 2010
  • LBH is a transcription factor as a candidate gene for CHD associated with partial trisomy 2p syndrome. To identify potential LBH-interacting partners, a yeast two-hybrid screen using LBH as a bait was performed with a human heart cDNA library. One of the clones identified encodes ${\alpha}B$-crystallin. Co-immunoprecipitation and GST pull-down assays showed that LBH interacts with ${\alpha}B$-crystallin, which is further confirmed by mammalian two-hybrid assays. Co-localization analysis showed that in COS-7 cells, ${\alpha}B$-crystallin that is cytoplasmic alone, accumulates partialy in the nucleus when co-transfected with LBH. Transient transfection assays indicated that overexpression of LBH or ${\alpha}B$-crystallin reduced the transcriptional activities of p53 and p21, respectively, Overexpression of both ${\alpha}B$-crystallin and LBH together resulted in a stronger repression of the transcriptional activities of p21 and p53. These results showed that the interaction of LBH and ${\alpha}B$-crystallin may inhibit synergistically the transcriptional regulation of p53 and p21.

HspBP1 Is the Negative Regulator of the Bovine Progesterone Receptor

  • Park, K.M.;Song, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1261-1267
    • /
    • 2003
  • We have investigated whether HspBP1, a Hsp70 binding protein, could have effect on the assembly of the bovine progesterone receptor (bPR) with a chaperone complex consisting of bovine Hsp90 (bHsp90), bovine Hsp70 (bHsp70), Hop, Ydj-1, and p23. The bPR, isolated in its native conformation, loses its function to interact with progesterone hormone in the absence of this protein complex. However, in the presence of bHsp90, bHsp70, Hop, p23 and Ydj-1, its function could be restored in vitro. Our findings here indicate that the inclusion of HspBP1 to five-protein system prevented the proper assembly of progesterone receptor-chaperone complex and induce the loss of bPR ability to interact with hormone. Immunoprecipitation assays of bPR with HspBP1 show that the presence of HspBP1 did not have any effect on the assembly of Ydj-1 and bHsp70 with the progesterone receptor. However, further assembly of Hsp90, Hop and p23 was completely prevented and the function of the bPR was lost. In vitro competition and protein folding assays indicated that the binding of HspBP1 to bHsp70 prevented the ternary complex formation of bHsp70, bHsp90, and Hop. These results indicate that HspBP1 is a negative regulator of the assembly of Hsp90, Hop and Hsp70, and thus, prevent the proper maturation of unliganded bPR with chaperones assembly system.

Anti-inflammatory activity of Camellia japonica oil

  • Kim, Seung-Beom;Jung, Eun-Sun;Shin, Seung-Woo;Kim, Moo-Han;Kim, Young-Soo;Lee, Jong-Sung;Park, Deok-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.177-182
    • /
    • 2012
  • Camellia japonica oil (CJ oil) has been used traditionally in East Asia to nourish and soothe the skin as well as help restore the elasticity of skin. CJ oil has also been used on all types of bleeding instances. However, little is known about its anti-inflammatory effects. Therefore, the anti-inflammatory effects of CJ oil and its mechanisms of action were investigated. CJ oil inhibited LPS-induced production of NO, $PGE_2$, and TNF-${\alpha}$ in RAW264.7 cells. In addition, expression of COX-2 and iNOS genes was reduced. To evaluate the mechanism of the anti-inflammatory activity of CJ oil, LPS-induced activation of AP-1 and NF-${\kappa}B$ promoters was found to be significantly reduced by CJ oil. LPS-induced phosphorylation of $I{\kappa}B{\alpha}$, ERK, p38, and JNK was also attenuated. Our results indicate that CJ oil exerts anti-inflammatory effects by downregulating the expression of iNOS and COX-2 genes through inhibition of NF-${\kappa}B$ and AP-1 signaling.

Structural insights showing how arginine is able to be glycosylated by pathogenic effector proteins

  • Park, Jun Bae;Yoo, Youngki;Cho, Hyun-Soo
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.609-610
    • /
    • 2018
  • Glycosylation is one form of protein modification and plays a key role in protein stability, function, signaling regulation and even cancer. NleB and SseK are bacterial effector proteins and possess glycosyltransferase activity, even though they have different substrate preferences. NleB/SseKs transfer the GlcNAc sugar to an arginine residue of host proteins, leading to reduced $NF-{\kappa}B-dependent$ responses. By combining X-ray crystallography, NMR, molecular dynamics, enzyme kinetic assays and in vivo experiments, we demonstrated that a conserved HEN (His-Glu-Asn) motif in the active site plays a key role in enzyme catalysis and virulence. The lid-domain regulates the opening and closing of the active site and the HLH domain determines the substrate specificity. Our findings provide evidence for the enzymatic mechanism by which arginine can be glycosylated by SseK/NleB enzymes.

Development of Life Test Specification for Catalytic Gas Sensor (접촉연소식 가스센서의 수명시험기준 개발)

  • Kang Jun-Ku;Park Jung-Won;Hwang Dong-Hoon;Ham Jung-Keol
    • Journal of Applied Reliability
    • /
    • v.6 no.1
    • /
    • pp.37-50
    • /
    • 2006
  • The accelerated life tests of the catalytic gas sensor were performed at three different gas concentration conditions. From the test data, the power-Weibull model was estimated and the acceleration factor between test condition 25%LEL(Lowe Explosive Limit) and use condition 5%LEL was about 3 according to this acceleration model. Using this acceleration factor, life test specification for qualifying that B10 lifetime of the catalytic gas sensor meets the goal lifetime (5 years) was designed.

  • PDF

Characterization of Bacillus thuringiensis subsp. aizawai CAB109 isolate with bioactivities to Spodoptera litura and Spodoptera exigua (Lepidoptera: Noctuidae) (담배거세미나방과 파밤나방에 활성이 있는 Bacillus thuringiensis subsp. aizawai CAB109 균주의 특성)

  • Kim, Tae-Hwan;Kim, Da-A;Kim, Ki-Su;Seo, Mi-Ja;Youn, Young-Nam;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.48 no.4
    • /
    • pp.509-517
    • /
    • 2009
  • Bacillus thuringiensis subsp. aizawai CAB109 isolated in Korea is known active against Spodoptera sp.. Especially, B. thuringiensis aizawai CAB109 isolates showed 100% mortality against Spodoptera litura and Spodoptera exigua. To screen highly active B. thuringiensis, the pathogenicity of B. thuringiensis CAB109 was compared with that of commercialized B. thuringiensis products. $LC_{50}$ values of CAB109, product TB-WP and product SC strains of B. thuringiensis were $1.3{\times}10^5$, $2.3{\times}10^6$ and $5.2{\times}10^5\;cfu/ml$ against the 2nd larva of S. litura and $1.8{\times}10^4$, $1.3{\times}10^6$ and $1.5{\times}10^6\;cfu/ml$ against the 2nd larva S. exigua, respectively. To determine new gene's existence and absence, the plasmid DNA was extracted, and compared to that of B.t. aizawai HD-133. Both B. thuringiensis were not like plasmid DNA pattern. PCR technique was used to predict both plasmid DNA's cry gene. PCR products analysis showed that B.t. CAB109 harbor Cry1Aa, Cry1Ab, Cry1C and Cry1D and B.t. HD-133 has Cry1Aa and Cry1Ab, respectively.

Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2

  • Wang, Yu-Shi;Zhu, Hongyan;Li, He;Li, Yang;Zhao, Bing;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.452-459
    • /
    • 2019
  • Background: Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B ($NF-{\kappa}B$) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. Methods: Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for $NF-{\kappa}B$, immunofluorescence imaging for the subcellular localization of Annexin A2 and $NF-{\kappa}B$ p50 subunit, coimmunoprecipitation of Annexin A2 and $NF-{\kappa}B$ p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. Results: Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and $NF-{\kappa}B$ p50 subunit and their nuclear colocalization, which attenuated the activation of $NF-{\kappa}B$ and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. Conclusion: This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.