• Title/Summary/Keyword: B.thuringiensis

Search Result 234, Processing Time 0.027 seconds

Studies on Outbreak of Diseases and Pests and Effect of Environmental Friendly Control Materials in Boxthorn (Lycium chinenseMill.) Organic Cultivation (구기자(Lycium chinense Mill.) 유기재배시 병해충 발생 및 친환경제제의 방제효과)

  • Lee, Bo-Hee;Park, Young-Chun;Lee, Sox-Su;Kim, Yeong-Guk;An, Yeong-Seob;Yu, Seung-Hun
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.385-396
    • /
    • 2011
  • This study was carried out to develop environmental friendly control for major diseases and pests on Boxthorn (Lycium chinense Mill.). Outbreak of Eighteen diseases and pests were found at the Boxthorn organic yards in Chung-nam province. Among them Powdery mildew (Erysiphe polygoni de Cand.), Hypophyllous mold (Pseudocercospora chengtuensis (Tai)), Western flower trips (Frankliniella occidentalis (Pergande)), Green peach aphid (Myzus pericae (Sulzer)) and Corn earworm (Helicoverpa armigera) needed to be controled by environmental friendly methods for high fruit yield of organic Boxthorn. In summer(Jun) test Bacilus subtilis QST 713 wettable powder and Sulfur wettable powder were effective and in autumn (Sep.) test Sulfur, Copper hydroxide and Paraffinic oil were relatively effective in Powdery mildew. In Hypophyllous mold control test Paraffinic oil and Bacilus subtilis GB - 0365 were effective with above 70% control value. And it was possible to control Western flower trips by natural enemy (Orius laevigatus) by 80% control value. Corn earworm was possible to control by Bacillus thuringiensis subsp. aizawai GB413 flowable and Bacillus thuringiensis aizawa 0423 wettable powder application above 70%. And Green peach aphid was controllable with environmental friendly materials, such as, Bacillus subtilis (Seoncho), Bacillus subtilis (Jinsami) above 80% and Ginkgo nut extract above 70% control value.

Biomineralization of Calcium Carbonate Polymorphs by the Bacterial Strains Isolated from Calcareous Sites

  • Dhami, Navdeep Kaur;Reddy, M. Sudhakara;Mukherjee, Abhijit
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.707-714
    • /
    • 2013
  • Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has various applications in remediation and restoration of a range of building materials. In the present investigation, five ureolytic bacterial isolates capable of inducing calcium carbonate precipitation were isolated from calcareous soils on the basis of production of urease, carbonic anhydrase, extrapolymeric substances, and biofilm. Bacterial isolates were identified as Bacillus megaterium, B. cereus, B. thuringiensis, B. subtilis, and Lysinibacillus fusiformis based on 16S rRNA analysis. The calcium carbonate polymorphs produced by various bacterial isolates were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X ray diffraction, and Fourier transmission infra red spectroscopy. A strain-specific precipitation of calcium carbonate forms was observed from different bacterial isolates. Based on the type of polymorph precipitated, the technology of MICCP can be applied for remediation of various building materials.

Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase

  • Hyun, Jeongwoo;Abigail, Maria;Choo, Jin Woo;Ryu, Jin;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1708-1716
    • /
    • 2016
  • Glucose dehydrogenase (GDH) is an oxidoreductase enzyme and is used as a biocatalyst to regenerate NAD(P)H in reductase-mediated chiral synthesis reactions. In this study, the glucose 1-dehydrogenase B gene (gdhB) was cloned from Bacillus thuringiensis subsp. kurstaki, and wild-type (GDH-BTWT) and His-tagged (GDH-BTN-His, GDH-BTC-His) enzymes were produced in Escherichia coli BL21 (DE3). All enzymes were produced in the soluble forms from E. coli. GDH-BTWT and GDH-BTN-His showed high specific enzymatic activities of 6.6 U/mg and 5.5 U/mg, respectively, whereas GDH-BTC-His showed a very low specific enzymatic activity of 0.020 U/mg. These results suggest that the intact C-terminal carboxyl group is important for GDH-BT activity. GDH-BTWT was stable up to 65℃, whereas GDH-BTN-His and GDH-BTC-His were stable up to 45℃. Gel permeation chromatography showed that GDH-BTWT is a dimer, whereas GDH-BTN-His and GDH-BTC-His are monomeric. These results suggest that the intact N- and C-termini are required for GDH-BT to maintain thermostability and to form its dimer structure. The homology model of the GDH-BTWT single subunit was constructed based on the crystal structure of Bacillus megaterium GDH (PDB ID 3AY6), showing that GDH-BTWT has a Rossmann fold structure with its N- and C-termini located on the subunit surface, which suggests that His-tagging affected the native dimer structure. GDH-BTWT and GDH-BTN-His regenerated NADPH in a yeast reductase-mediated chiral synthesis reaction, suggesting that these enzymes can be used as catalysts in fine-chemical and pharmaceutical industries.

Interaction of Pseudostellaria heterophylla with Quorum Sensing and Quorum Quenching Bacteria Mediated by Root Exudates in a Consecutive Monoculture System

  • Zhang, Liaoyuan;Guo, Zewang;Gao, Huifang;Peng, Xiaoqian;Li, Yongyu;Sun, Shujing;Lee, Jung-Kul;Lin, Wenxiong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2159-2170
    • /
    • 2016
  • Many plant-pathogenic bacteria are dependent on quorum sensing (QS) to evoke disease. In this study, the population of QS and quorum quenching (QQ) bacteria was analyzed in a consecutive monoculture system of Pseudostellaria heterophylla. The isolated QS strains were identified as Serratia marcescens with SwrIR-type QS system and exhibited a significant increase over the years of monoculture. Only one QQ strain was isolated from newly planted soil sample and was identified as Bacillus thuringiensis, which secreted lactonase to degrade QS signal molecules. Inoculation of S. marcescens to P. heterophylla root could rapidly cause wilt disease, which was alleviated by B. thuringiensis. Furthermore, the expression of lactonase encoded by the aiiA gene in S. marcescens resulted in reduction of its pathogenicity, implying that the toxic effect of S. marcescens on the seedlings was QS-regulated. Meanwhile, excess lactonase in S. marcescens led to reduction in antibacterial substances, exoenzymes, and swarming motility, which might contribute to pathogensis on the seedlings. Root exudates and root tuber extracts of P. heterophylla significantly promoted the growth of S. marcescens, whereas a slight increase of B. thuringiensis was observed in both samples. These results demonstrated that QS-regulated behaviors in S. marcescens mediated by root exudates played an important role in replanting diseases of P. heterophylla.

Control effects of 20 chemical insecticides and new strains of Bacillus thuringiensis against the fungus gnat (Bradysia difformis, Sciaridae, Diptera)

  • Jang, Hyun-Ju;Kim, Hee-Ji;Kwon, Hye-Ri;Yu, Yong-Man;Youn, Young-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.185-196
    • /
    • 2018
  • The fungus gnat, Bradysia difformis, damages various crops in greenhouses and is recognized as an important pest around the world. Additionally, in the future, many other greenhouse crops will be added to the list of crops damaged by the fungus gnat. In this study, to find effective control methods for the fungus gnat, the insecticidal effect of 20 chemical synthetic insecticides was tested with the potato disc and pot treatment methods; additionally, the control effect of 16 strains of B. thuringiensis was examined with the potato disk method. The fungus gnat larvae were treated for 2 days with each of the synthetic insecticides to determine insecticidal effect using the potato disc method. The results were as follows. Among the highly insecticidal active pesticides, chlorfenapyr exhibited a 100% insecticidal activity, and fenazaquin, acetamiprid, dinotefuran, fenthion and thiamethoxam exhibited more than a 90% insecticidal activity. For the pot treatment method, chlorfenapyr exhibited a 3.3% insecticidal effect, and thiamethoxam, acetamiprid, dinotefuran, fenthion, etc. exhibited an insecticidal effect of less than 10% of the emergence rate to adult fungus gnat after 14 days of treatment. To select the B. thuringiensis strains that have an insecticidal effect on the fungus gnat, 16 strains were biologically assayed using the potato disc method. Among the 16 strains, Bt-3, Bt-8 and Bt-13 had more than a 70% insecticidal effect. The $LC_{50}$ and $LC_{95}$ values of Bt-3, Bt-8 and Bt-13 were $3.7{\times}10^5$ and $4.7{\times}10^8cfu/ml$, $1.4{\times}10^5$ and $1.1{\times}10^7cfu/ml$, and $1.4{\times}10^5$ and $1.3{\times}10^7cfu/ml$, respectively.

Cloning and Expression of Bacillus thuringiensis crylAa1 Type Gene. (Bacillus thuringiensis crylAa1 Type Gene의 클로닝과 발현)

  • 이형환;황성희;권혁한;안준호;김혜연;안성규;박수일
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.110-116
    • /
    • 2004
  • The over-expression in E. coli of the pHLN1-SO(+) and pHLN2-80(-) plasmids cloned an insecticidal crystal protein (ICP) gene (crylAal type) from Bacillus thuringiensis var. kurstaki HD 1 was investigated through in part, the deletion of -80 bp promoter and an alternative change of cloning vector system. Two recombinant plasmids were constructed in an attempt to analyze the over-expression of the ICP in relations to its gene structure possessing only -14 bp [Shine-Dalgarno (SD) sequence of -80 bp promoter]. Also, anther two recombinant plasmids similarly cloned the icp gene in a different vector system. The amounts of ICP produced from the recombinants were measured by SDS-PAGE and confirmed by Western blot analysis. One clone, pHLRBS1-14 clone in which only the SD sequence in the inverted orientation icp gene appeared, was more evident than the pHLRBS2-14 clone in which only the -14 bp SD sequence of the right orientated icp gene was shown to exist. The pHLN2-80(-) clone produced more ICP proteins than the pHLRBS1-14 clone. In the two clones, pHLNUC1-80 right-oriented icp gene and the pHLNUC2-80 clone inverted-orientation icp gene in a new different vector, the pHLNUC2-80 produced more ICP proteins in E. coli system. These results indicate that the P/ac promoter, the inverted icp gene insertion and -80 bp promoter (-66 bp part of the icp gene promoters), were concerned with the expression of the icp gene in the recombinant plasmids. In addition, the expression mechanism might result from the disruption of the transcription-suppressing regions in the promoter regions.

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.

Identification of Enteric Bacteria from Nephila clavata (한국산 무당거미(Nephila clavata)에서 분리한 장내 세균의 동정)

  • 문은영;오현우;맹필재;배경숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Spiders are carnivores that prey upon insects and other small arthropods through digestion of food outside the body. Although spider poison may contain proteolytic enzymes, these are thought to play an insignificant role in actual digestion. The source of active proteolytic enzymes can be either the digestive tract cells of spider, or natural microbial flora in the digestive tract of spider. In this study, digestive tracts from the spider, Nephila clavata, were screened for bacteria that have protease or lipase activity. A total of $10^3-10^5$ CFU was recovered from a spider and more than 90% of them showed protease and lipase activity respectively. Of the microbial isolates, 63.3% showed protease or lipase activity, and 50% of these showed both protease and lipase activity. Some of the isolates were characterized using a battery of chemical, phenotypic and genotypic methods. Eleven Gram negative bacteriaa (Acinetobacter calcoaceticus, A. haemolyticus, Alcaligenes faecalis, Cedecea davisae, C. neteri, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas fluorescens, Serratia marcescens, Stenotrophomonas maltophilia, Suttonella indologenes) and 11 Gram positive bacteria (Bacillus cereus, B. coagulans, B. pasteurii, B. thuringiensis, Cellulomonas flavigena, Corynebacterium martruchotii, Enterococcus durans, E. faecalis, Micrococcus luteus, Staphylococcus hominis, S. sciuri) were identified.

  • PDF

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

Sterilization of Food-Borne Pathogenic Bacteria by Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체장벽방전 플라즈마에 의한 식품유해 미생물 살균)

  • Lee, Seung Je;Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.222-227
    • /
    • 2017
  • This study aimed to explore the potential for food-industry application of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganism. The effects of the key parameters such as power, oxygen ratio, exposure time and distance on Escherichia coli KCCM 21052 sterilization by the atmospheric pressure DBD plasma treatment were investigated. The experimental results revealed that increasing the power, exposure time or oxygen ratio and decreasing the exposure distance led to an improvement in the sterilization efficiency of E. coli. Furthermore, the atmospheric pressure DBD plasma (1.0 kW power, 1.0% (v/v) $O_2$, 5 min exposure time and 20 mm exposure distance) treatment was very effective for the sterilization of food-borne pathogenic bacteria. The sterilization rate of E. coli, Bacillus cereus KCCM 40935, Bacillus subtilis KCCM 12027, Bacillus thuringiensis KCCM 11429 and Bacillus atrophaeus KCCM 11314 were 72.3%, 74.6%, 88.5%, 84.7% and 91.3%, respectively.