• Title/Summary/Keyword: B.amyloliquefaciens

Search Result 181, Processing Time 0.033 seconds

Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation

  • Kim, Min Jeong;Shim, Chang Ki;Park, Jong-Ho
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.580-595
    • /
    • 2021
  • Although late blight is an important disease in ecofriendly potato cultivation in Korea, it is highly dependent on the use of eco-friendly agricultural materials and the development of biological control technology is low. It is a necessary to develop an effective biocontrol agent to inactivate late blight in the field. AFB2-2 strain is a gram-positive with peritrichous flagella. It can utilize 20 types of carbon sources, like L-arabinose, and D-trehalose at 35℃. The optimal growth temperature of the strain is 37℃. It can survive at 20-50℃ in tryptic soy broth. The maximum salt concentration tolerated by AFB2-2 strain is 7.5% NaCl. AFB2-2 strain inhibited the mycelial growth of seven plant pathogens by an average inhibitory zone of 10.2 mm or more. Among the concentrations of AFB2-2, 107 cfu/ml showed the highest control value of 85.7% in the greenhouse. Among the three concentrations of AFB2-2, the disease incidence and severity of potato late blight at 107 cfu/ml was lowest at 0.07 and 6.7, respectively. The nucleotide sequences of AFB2-2 strain were searched in the NCBI GenBank; Bacillus siamensis strain KCTC 13613, Bacillus velezensis strain CR-502, and Bacillus amyloliquefaciens strain DSM7 were found to have a genetic similarity of 99.7%, 99.7%, and 99.5%, respectively. The AFB2-2 strain was found to harbor the biosynthetic genes for bacillomycin D, iturin, and surfactin. Obtained data recommended that the B. velezensis AFB2-2 strain could be considered as a promising biocontrol agent for P. infestans in the field.

Comparison of Statistical Methods for Optimization of Salts in Medium for Production of Carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a Recombinant E. coli JM109/DL-3 (Bacillus amyloliquefaciens DL-3의 carboxymethylcellulase를 재조합 균주 E. coli JM109/DL-3에서 생산하는 배지의 염 농도를 최적화하기 위한 통계학적 실험 방법의 비교)

  • Lee, You-Jung;Kim, Hye-Jin;Gao, Wa;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1205-1213
    • /
    • 2011
  • The optimal concentrations of salts in medium for cell growth and the production of carboxymethylcellulase (CMCase) by a recombinant E. coli JM109/DL-3 were established using two statistical methods: orthogonal array method (OAM) and response surface method (RSM). The analysis of variance (ANOVA) of data based on OAM indicated that $K_2HPO_4$ gave maximum sum of square (S) and percentage contribution (P) for cell growth as well as production of CMCase. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ in medium for cell growth extracted by Qualitek-4 (W32b) Software were 10.0, 1.0, 0.2, and 0.6 g/l, respectively, whereas those for the production of CMCase by E. coli JM109/DL-3 were 5.0, 1.0, 0.4, and 0.6 g/l. The analysis of variance (ANOVA) resulting from RSM indicated that a highly significant salt for cell growth was $K_2HPO_4$ ("probe>F" less than 0.0001), whereas $K_2HPO_4$ and $MgSO_4{\cdot}7H_2O$ were significant for the production of CMCase. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ for cell growth extracted by Design Expert Software were 7.44, 1.08, 0.22, and 0.88 g/l, respectively, whereas those for production of CMCase were 5.84, 0.69, 0.28, and 0.54 g/l. The optimal concentrations of salts and their influences on cell growth and production of CMCase extracted by OAM were almost the same as those by RSM. Production of CMCase by a recombinant E. coli JM109/DL-3 under optimized concentration of salts was 1.93 times higher than that by Bacillus amyloliquifaciens DL-3.

Growth Performance and Antibody Response of Broiler Chicks Fed Yeast Derived β-Glucan and Single-strain Probiotics

  • An, B.K.;Cho, B.L.;You, S.J.;Paik, H.D.;Chang, H.I.;Kim, S.W.;Yun, C.W.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1027-1032
    • /
    • 2008
  • A study was conducted to evaluate the effects of dietary yeast derived ${\beta}$-glucan and single-strain probiotics on the growth performance and antibody response in broiler chicks. Six hundred and thirty 1-d-old male broiler chicks were divided into seven groups, placed into three pens per group (30 birds per pen) and fed one of seven non-medicated corn-SBM based experimental diets containing 0.025, 0.05 or 0.1% Saccharomyces cerevisiae ${\beta}$-glucan and 0.05, 0.1 or 0.2% Bacillus amyloliquefaciens (BA-pro, $1.3{\times}10^9/g$) or devoid of them for 5 wk. The body weight gains in groups fed diets containing 0.025 or 0.1% ${\beta}$-glucan, 0.1% or 0.2% BA-pro were significantly higher (p<0.05) than the control over 1-35 d. Feed conversion rates of groups fed ${\beta}$-glucan and BA-pro tended to be improved compared to the control group. There were no significant differences in the relative weights of liver, abdominal fat and breast muscle. No significant differences were observed in the activities of serum enzymes and concentrations of various cholesterol fractions. The antibody titers against Newcastle disease or infectious bronchitis virus in the chicks fed diets containing ${\beta}$-glucan and BA-pro were significantly higher (p<0.05) than in the control. The concentrations of cecal lactic acid bacteria in all groups fed BA-pro were significantly increased (p<0.05) compared to the control. These results indicated that dietary yeast derived ${\beta}$-glucan and BA-pro exerted growth-promoting and immune-enhancing effects in broiler chickens. In addition, BA-pro added to the diets modulated the profiles of cecal microflora, reflecting a potential to be beneficial microorganisms in chickens.

Molecular Cloning and Characterization of Chitosanase Gene from Bacillus amyloliquefaciene MJ-1 (Bacillus amyloliquefaciens MJ-1 유래의 chitosanase 유전자의 클로닝 및 특성)

  • Park Chan-Soo;Oh Hae-Geun;Hong Soon-Kwang;Park Byung-Chul;Hyun Young;Kang Dae-Kyung
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.142-148
    • /
    • 2006
  • In order to develop chitosanase for the production of chitosan oligosaccharides, a chitosanase-producing bacterium was isolated from the traditional fermented soybean, Meju, and identified as Bacillus amyloliquefaciene MJ-1. The cloned chitosanase gene, 825 bp in size, encoded a single peptide of 274 amino acids with a estimated molecular mass of 30.9 kDa. The deduced amino acid sequence showed significant homology with microbial chitosanases. The recombinant chitosanase was expressed in Escherichia coli upon induction with isopropyl-D-thiogalactopyranoside, and purified using $Ni^{2+}-NTA$ agarose column chromatography. The maximal activity of the recombinant chitosanase is at pH 5.0 and $60^{\circ}C$. The recombinant chitosanase is stable between pH 5.0 and pH 7.0 at $37^{\circ}C$ for 30 min, and more than 75% of the activity still remain at $80^{\circ}C$ for 30 min incubation.

Comparison of microbial community profiling on traditional fermented soybean products (Deonjang, Gochujang) produced in Jeonbuk, Jeonnam, and Jeju province area (제주·호남권 전통된장과 고추장의 미생물 군집구조의 분석)

  • Cho, Sung Ho;Park, Hae Suk;Jo, Seung Wha;Yim, Eun Jung;Yang, Ho Yeon;Ha, Gwang Su;Kim, Eun Ji;Yang, Seung Jo;Jeong, Do Yeon
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.39-48
    • /
    • 2017
  • In order to evaluate the diversity of microbial population of Korean traditional Deonjang and Gochujang produced in Jeju, Jeonnam, and Jeonbuk province area, microbial communities were analyzed using next generation sequencing. In this result, the dominant bacteria of Deonjang in three area were Bacillus amyloliquefaciens, Tetragenococcus halophilus, and Bacillus was major dominant bacteria in Jeonnam (43.16%) and Jeonbuk (64.54%) area. But in Jeju area, Bacillus was 0.22%, which was significantly different from the other two. Equally, the dominant fungi of Deonjang in 3 area were Candida versatilis. Common fungus in Jeonnam and Jeonbuk area was Candida sp., respectively, 64.22% and 33.68% and Micor sp. was a common fungus in Jeonnam (15.66%) and Jeonbuk area (36.73%). But in Jeju area, Candida sp. and Zygosaccharomyces rouxii were dominant than mold. Bacillus subtilis, Bacillus licheniformis, and B. amyloliquenfaciens were the preminant bacteria in the traditional Gochujang in three regions. But there were no common dominant fungi in the 3 regions. Aspergillus sp. and Rhizopus sp. prevailed in Jeju and Jeonnam region, and Zygosaccharomycess rouxii predominanted in Jeonbuk area. These results suggested that the difference in the samples collected for the study were classified into similar groups according to the characteristics of each sample rather than regional characteristics.

Changes in Quality of according to Fermentation Time of Fermented Soybean Produced Made with Bacillus amyloliquefaciens (Bacillus amyloliquefaciens로 제조한 콩 발효물의 발효시간에 따른 품질 변화)

  • Shin, Dong Sun;Choi, In Duck;Park, Ji Young;Kim, Nam Geol;Lee, Seuk Ki;Jeong, Kwang-Ho;Park, Chang Hwan;Choi, Hye Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.4
    • /
    • pp.381-389
    • /
    • 2020
  • The purpose of this study was to evaluate the appearance, physicochemical, physical, and fermentation properties of the fermented soybean produced by manufacturing with inoculation the different types of microbial strains. The strains were inoculated by the NSI (natural strains inoculation), and the SSI (selective strain inoculation) were treatments. The appearance showed differences in color, viscous substance, and hardness depending on strains inoculation and fermentation duration. The pH, and total acidity were 6.40~7.26%, and 0.10~0.39% respectively with differences depending on the samples. The moisture content as the fermentation duration increased, the NSI (56.03~57.66%) decreased and the SSI (56.71~58.63%) increased. The physical characteristics of the hardness increased as the fermentation duration increased for the NSI and the SSI decreased. The color values for the L, a, and b values were 47.64~58.56, 7.15~9.08, and 12.41~17.30, respectively. The α-amylase and protease activities of the SSI were the highest among all treatments. The total viable cell counts of the fermented soybean products by strains were 5.02 to 9.77 log CFU/g, and SSI (fermentation, 48 hours) was the highest. The amino-type nitrogen contents of all samples were 301.62~746.97 mg% and the SSI showed the highest content. The amino acid had the highest glutamic acid content.

Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile

  • Sajedi, Reza Hassan;Taghdir, Majid;Naderi-Manesh, Hossein;Khajeh, Khosro;Ranjbar, Bijan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.315-324
    • /
    • 2007
  • The novel $\alpha$-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of $Ca^{2+}$ and EDTA. Therefore, KRA acts as a $Ca^{2+}$-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of $Ca^{2+}$ and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its Tm. The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis $\alpha$-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the $\alpha$-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

  • Chung, Eu Jin;Hossain, Mohammad Tofajjal;Khan, Ajmal;Kim, Kyung Hyun;Jeon, Che Ok;Chung, Young Ryun
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.152-164
    • /
    • 2015
  • Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and $YC7010^T$, with antimicrobial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension ($10^7cfu/ml$) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC $15859^T$ (99.67%), Bacillus methylotrophicus KACC $13105^T$ (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC $17177^T$ (99.60%), and Bacillus tequilensis KACC $15944^T$ (99.45%). The DNA-DNA relatedness value between strain $YC7010^T$ and the most closely related strain, B. siamensis KACC $15859^T$ was $50.4{\pm}3.5%$, but it was $91.5{\pm}11.0%$ between two strains YC7007 and $YC7010^T$, indicating the same species. The major fatty acids of two strains were anteiso-$C_{15:0}$ and iso $C_{15:0}$. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC7007 and $YC7010^T$ represent novel species of the genus Bacillus, for which the name Bacillus oryzicola sp. nov. is proposed. The type strain is $YC7010^T$ (= KACC $18228^T$). Taken together, our findings suggest that novel endophytic Bacillus strains can be used for the biological control of rice diseases.

Sterilization and quality variation of dried red pepper by atmospheric pressure dielectric barrier discharge plasma (대기압 유전체장벽방전 플라즈마에 의한 건고추의 식중독균 살균효과 및 품질변화)

  • Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum;Lee, Seung Je
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.960-966
    • /
    • 2016
  • This study was conducted to explore the potential for use of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganisms in dried red pepper. The effects of key parameters such as power, exposure time and distance on the sterilization efficiency and the quality of red dried pepper by the atmospheric pressure DBD plasma treatment were investigated. The results revealed that the plasma treatment was very effective for sterilization of Staphylococcus aureus, with 15 min of treatment at 1.0 kW and 20 mm sterilizing 82.6% of the S. aureus. Increasing the power or exposure time and decreasing the exposure distance led to improved sterilization efficiency. The atmospheric pressure DBD plasma treatment showed no effect on the ASTA (American spice trade association) value or hardness of dried red pepper. Furthermore, no effects of atmospheric pressure DBD plasma treatment were observed on the sensory properties of dried red pepper. To assess the storage stability, the dried red pepper was treated with atmospheric pressure DBD plasma (1.5 kW power, 15 min exposure time and 10 mm exposure distance), then stored for 12 weeks at $25^{\circ}C$. Consequently, the ASTA value, hardness and capsaicin concentration of dried red pepper were maintained.

Anti-Obesity Effects of Fermented Soybean Oils in 3T3-L1 Pre-Adipocytes and High Fat Diet-Fed C57BL/6J Mice (발효콩 유지의 3T3-L1 지방전구세포와 고지방식이를 급여한 C57BL/6J 생쥐에 대한 항비만 효과)

  • Kim, Seon-Woong;Kim, Nam-Seok;Oh, Mi-Jin;Kim, Ha-Rim;Kim, Min-Sun;Lee, Da-Young;Yoon, Suk-Hoo;Jung, Mun-Yhung;Kim, Hun-Jung;Lee, Chang-Hyun;Oh, Chan-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.279-288
    • /
    • 2017
  • This study investigated the manufacturing of fermented soybean oil using a fermenting strain commonly processed for soybeans [Bacillus amyloliquefaciens (BA), Bacillus subtilis (BS), Lactobacillus acidophilus (LBA), and B. subtilis+L. acidophilus (BLO)] and evaluated its anti-obesity activities. Cytotoxicity of four kinds of fermented soybean oils was not observed in 3T3-L1 preadipocytes at 10 and $50{\mu}g/mL$. Triglyceride content was reduced by 20.6% in the BLO group at a treatment concentration of $50{\mu}g/mL$. The simultaneous treatment of fermented soybean oil and differentiation induction medium decreased $PPAR{\gamma}$ and $C/EBP{\alpha}$ gene expression at a concentration of $50{\mu}g/mL$ and blocked adipocyte differentiation by increasing adiponectin gene expression. The inhibitory effect of adipocyte differentiation was greatest in the BLO group. C57BL/6J mice were examined for 4 weeks after being separated into seven groups [normal diet group (N), high fat diet group (C), group fed high fat diet combined with regular soybean oil (SO), group fed non-fermented soybean oil (NF), and groups fed high fat diet combined with 5% fermented soybean oil (BA, BS, LBA, and BLO)] to identify the effects of soybean oil on body weight, serum lipid, adiponectin, insulin, and leptin levels in mice with high fat diet-induced obesity. The body weight and serum lipid level of the C group increased drastically compared to those of the N group. In contrast, the group fed a diet combined with fermented soybean oil showed decreases in weight, serum total cholesterol, LDL-cholesterol, and triglyceride levels compared to those of the C group. Moreover, soybean oil was found to be effective in the BLO group. In conclusion, fermented soybean oil has positive effects in prohibiting adipocyte differentiation increased by high fat diet and improving serum lipid composition. Therefore, fermented soybean oil can be used as a functional food material with anti-obesity activity.