• Title/Summary/Keyword: B-spline surface

Search Result 188, Processing Time 0.035 seconds

Background Surface Estimation for Reverse Engineering of Reliefs

  • Liu, Shenglan;Martin, Ralph R.;Langbein, Frank C.;Rosin, Paul L.
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 2007
  • Reverse engineering of reliefs aims to turn an existing relief superimposed on an underlying surface into a geometric model which may be applied to a different base surface. Steps in this process include segmenting the relief from the background, and describing it as an offset height field relative to the underlying surface. We have previously considered relief segmentation using a geometric snake. Here, we show how to use this initial segmentation to estimate the background surface lying under the relief, which can be used (i) to refine the segmentation and (ii) to express the relief as an offset field. Our approach fits a B-spline surface patch to the measured background data surrounding the relief, while tension terms ensure this background surface smoothly continues underneath the relief where there are no measured background data points to fit. After making an initial estimate of relief offset height everywhere within the patch, we use a support vector machine to refine the segmentation. Tests demonstrate that this approach can accurately model the background surface where it underlies the relief, providing more accurate segmentation, as well as relief height field estimation. In particular, this approach provides significant improvements for relief concavities with narrow mouths and can segment reliefs with small internal holes.

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

A Basic Study on the Fairing Method of Ship Hull Surface (선형의 순정 기법에 관한 기초 연구)

  • D.J. Kim;T.K. Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.15-21
    • /
    • 1994
  • In the previous researches on mesh curve fairing method, a set of discrete data points in a mesh can be selected as variables. End tangent vectors can not be variables. This restriction makes some problems in preparing the end tangent vectors at the bow or stern parts, because their slopes are not infinites or zeros. In this paper end tangent vectors are included as variables and the more smooth results are obtained. Also two methods of constructing ship hull surface from mesh curves are examined. It is shown that the skinning method is better than non-uniform B-spline fitting method in representing the area near boundary. The generation of a ship surface is given as an example.

  • PDF

Compensation of Geometric Error by the Correction of Control Surface (제어곡면 수정에 의한 기하오차 보정)

  • Ko, Tae-Jo;Park, Sang-Shin;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

On the Earthwork Volume Decision Using Spline Surfaces (스플라인 곡면을 이용한 토공량 결정에 관한 연구)

  • 류재칠;이승훈;문두열
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.85-92
    • /
    • 2002
  • The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to advanced the accuracy of earthwork calculation. Current methods used for estimating the volume of pit excavation assumes that the ground profile between the grid points is linear(trapezoidal rule), or nonlinear(simpson's formulas). Generally speaking, the nonlinear profile formulas provide better accuracy than the linear profile formulas. However, all the formulas mentioned have a common drawback to ground profile, such as sharp corners or the grid points of any two straight lines. In this paper, we propose an algorithm of finding a spline surface which interpolates the given data and an appropriate method to calculate the earthwork. We present some computational results showing that our proposed method provides better accuracy than Chen and Lin's method.

Analysis of Steady and Unsteady Flow Around a Ship Using a Higher-Order Boundary Element Method (고차경계요소법에 의한 선체주위 유동해석)

  • Sa-Y. Hong;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.42-57
    • /
    • 1995
  • An efficient and accurate scheme has been constructed by taking advantages of the hi-quadratic spline scheme and the higher-order boundary element method selectively depending on computation domains. Boundary surfaces are represented by 8-node boundary elements to describe curved surfaces of a ship and its neighboring free surface more accurately. The variation of the velocity potential complies with the characteristics of the 8-node element on the body surface. But on the free surface, it is assumed to follow that of the hi-quadratic spline scheme. By which, the free surface solution is free from numerical damping and has better numerical dispersion property. As numerical examples, steady and unsteady Neumann-Kelvin problems are considered. Numerical results for a submerged spheroid, Series 60($C_B=0.6$) and a modified support the proposed method. Finally, a new upstream radiation condition is derived using a wave equation operator in order to deal with problems for subcritical reduced frequency. The relevance of this operator has been confirmed in the case of unsteady Kelvin source potential.

  • PDF

Building Wind Corridor Network Using Roughness Length (거칠기길이를 이용한 바람통로 네트워크 구축)

  • An, Seung Man;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.101-113
    • /
    • 2015
  • The purpose of this study is increasing ventilation network usability for urban green space planning by enhancing its practicality and detail. A ventilation network feature extraction technique using roughness length($z_0$) was proposed. Continuously surfaced DZoMs generated from $z_0$(cadastral unit) using three interpolations(IDW, Spline, and Kriging) were compared to choose the most suitable interpolation method. Ventilation network features were extracted using the most suitable interpolation technique and studied with land cover and land surface temperature by spatial overlay comparison. Results show Kriging is most suitable for DZoM and feature extraction in comparison with IDW and Spline. Kriging based features are well fit to the land surface temperature(Landsat-7 ETM+) on summer and winter nights. Noteworthy is that the produced ventilation network appears to mitigate urban heat loads at night. The practical use of proposed ventilation network features are highly expected for urban green space planning, though strict validation and enhancement should follow. (1) $z_0$ enhancement, (2) additional ventilation network interpretation and editing, (3) linking disconnected ventilation network features, and (4) associated dataset enhancement with data integrity should technically preceded to enhance the applicability of a ventilation network for green space planning. The study domain will be expanded to the Seoul metropolitan area to apply the proposed ventilation network to green space planning practice.

A Sweep Surface based on Two-Parameter Motion (2-변수 모션기반의 스윕곡면)

  • Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • We present a new technique for constructing a sweep surface using two-parameter motion. Firstly, a new rational B-spline motion with two parameters is introduced, which is obtained by extending its orientation curve and scaling curve to surface counterparts. A sweep surface is then defined by a single vertex v under the two-parameter motion and allows to represent different u-directional iso-curves depending on parameter ${\upsilon}$. Efficient techniques for modeling and editing the surface are achieved by intuitively controlling the two-parameter motion. We demonstrate the effectiveness of our technique with experimental results on modeling and editing a 3D propeller model.

A Study on Intersection Computation in Interval Arithmetic (인터벌 연산 기반의 곡면간 교차선 계산에 관한 연구)

  • Ko, Kwang-Hee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.178-188
    • /
    • 2010
  • This paper addresses the problem of determining if two surfaces intersect tangentially or transversally in a mathematically consistent manner and approximating an intersection curve. When floating point arithmetic is used in the computation, due to the limited precision, it often happens that the decision for tangential and transversal intersection is not clear cut. To handle this problem, in this paper, interval arithmetic is proposed to use, which provides a mathematically consistent way for such decision. After the decision, the intersection is traced using the validated ODE solver, which runs in interval arithmetic. Then an iterative method is used for computing the accurate intersection point at a given arc-length of the intersection curve. The computed intersection points are then approximated by using a B-spline curve, which is provided as one instance of intersection curve for further geometric processing. Examples are provided to demonstrate the proposed method.

Simulation Study for the Application of NURBS Interpolator (CNC공작기계에 NURBS 보간 알고리즘 적용을 위한 시뮬레이션 분석)

  • 김태훈;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.979-982
    • /
    • 2001
  • In CNC machining, demands on precision machining of free formed surface model are increasing. Most of the CAD/CAM systems provide the NURBS(Non-Uniform Rational B-Spline) interpolator. NURBS is defined with NURBS parameter by control point, weight value and knot value. This paper shows the realtime NURBS interpolation algorithms and compared with each other. One is based on the equal length of curve segments rather than equal increment of the parameter Δu. The other is to limit the interpolation error to any desired level by adjusting the feedrate considering the curvature of the shape and sampling time.

  • PDF