• Title/Summary/Keyword: B-modulation

Search Result 996, Processing Time 0.02 seconds

Change of Recognition Range According to Modulation Index of the 13.56MHz RFID Type B System (13.56MHz RFID Type B 시스템에서 변조지수에 따른 인식거리의 변화)

  • Kim, Yong-Hee;Yang, Woon-Geun;Yoo, Hong-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.119-122
    • /
    • 2005
  • In this paper, we investigated the recognition range according to modulation index for the ISO(International Standards Organization) 14443 13.56MHz contactless Type B RFID(Radio Frequency IDentification) system. We measured recognition range with changing modulation index step by step from 5% to 24% where we used 4 samples of Type B transponder with different resonance frequencies between 13.838MHz and 17.200MHz. While gradually increasing a distance in vertical direction from the center of the reader antenna, we measured the distance where the transponder's PUPI(Pseudo Unique PICC(Proximity IC Card) Identifier) is recognized continuously during 10 seconds and the distance where the transponder's PUPI is recognized at least two times during 5 seconds. From the measurement results, we found that the best recognition ranges were achieved when the reader had modulation index between 11% and 14%.

  • PDF

Dynamic Range Improvement of IM-DD Optical Link using Dual-Wavelength Dual-Parallel Modulation

  • Li, Xianghua;Yang, Chun;Zhou, Zhenghua;Chong, Yuhua
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.330-334
    • /
    • 2014
  • In this paper, we present an incoherent dual-parallel modulation linearized optical link employing two different optical wavelengths. Comparing with previous dual-parallel modulation, this linearization method prevents the recreation of distortion products and can be readily implemented. Furthermore, a dual-wavelength dual-parallel modulation linearized optical link constructed with the commercially available devices is experimentally demonstrated with a spurious-free dynamic range of $122.5dB.Hz^{4/5}$. More than 25 dB suppression of the intermodulation distortion, 15.6 dB improvement of spurious-free dynamic range and 1.5 dB improvement of compression dynamic range are achieved after linearization.

Fast Space Vector PWM Modulation of Multi-Level Inverter Without NTV Identification (NTV 식별과정 없는 멀티레벨 인버터의 신속한 공간벡터 PWM 변조 기법)

  • Jin, Sun-Ho;Oh, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.299-305
    • /
    • 2006
  • In this paper, we suggest a new space vector PWM modulation method with very short processing time which does not need identification of nearest three vectors(NTV) and duty ratio for each vector. The suggested PWM method makes mean value of phase voltage to be same as reference during every modulation period by use of a triangle in small hexagon on multi-level vector space. This paper described the suggested modulation method can be successfully applied to the space vector modulation use of multi-level inverter by computer simulations and experiments.

Performance of an Adaptive Modulation System Using Antenna Switching (안테나 교환을 사용하는 적응 변조 시스템의 성능 분석)

  • 임창헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.907-914
    • /
    • 2004
  • In this paper, we propose an application of the receiver antenna switching to an conventional adaptive modulation system and derived the optimal antenna switching threshold of the system to maximize the average transmission bit rate and analyzed its performance. Also, we compare the performances of the presented scheme with those of an adaptive modulation using the antenna selection diversity and the one with a single antenna in terms of the average number of bits per symbol and the probability of no transmission. Performance comparison results show that the proposed system has an SNR gain of 1.4 dB over the adaptive modulation using a single antenna when the average number of bits per a symbol is two and yields an SNR gain of 6 dB for maintaining the probability of no transmission at the level of 0.1.

Perfonnance Analysis of the Combined AMC-MIMO Systems with MCS Level Selection Method (MCS 레벨 선택 방식에 따른 AMC-MIMO 결합 시스템의 성능 비교)

  • Hwang In-Tae;Kang Min-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.665-671
    • /
    • 2006
  • In this paper, we propose and observe a system that adopts Independent-MCS (Modulation and Coding Scheme) level for each layer in the combined AMC-V-BLAST (Adaptive Modulation and Coding-Vertical-Bell-lab Layered Space-Time) system. Also, comparing with the combined system using Common-MCS level, we observe throughput performance improvement. As a result of simulation, Independent-MCS level case adapts modulation and coding scheme for maximum throughput to each channel condition in separate layer, resulting in improved throughput compared to Common-MCS level case. Especially, the results show that the combined AMC-V-BLAST system with Independent-MCS level achieves a gain of 700kbps in $7dB{\sim}9dB$ SNR (Signal-to-Noise Ratio) range.

Constant Envelope Enhanced FQPSK and Its Performance Analysis

  • Xie, Zhidong;Zhang, Gengxin;Bian, Dongming
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.442-448
    • /
    • 2011
  • It's a challenging task to design a high performance modulation for satellite and space communications due to the limited power and bandwidth resource. Constant envelope modulation is an attractive scheme to be used in such cases for their needlessness of input power back-off about 2~3 dB for avoidance of nonlinear distortion induced by high power amplifier. The envelope of Feher quadrature phase shift keying (FQPSK) has a least fluctuation of 0.18 dB (quasi constant envelope) and can be further improved. This paper improves FQPSK by defining a set of new waveform functions, which changes FQPSK to be a strictly constant envelope modulation. The performance of the FQPSK adopting new waveform is justified by analysis and simulation. The study results show that the novel FQPSK is immune to the impact of HPA and outperforms conventional FQPSK on bit error rate (BER) performance. The BER performance of this novel modulation is better than that of FQPSK by more than 0.5 dB at least and 2 dB at most.

Perfonnance Analysis of Binary CDMA systems in Multi-Path Fading Channel (다중경로 페이딩 환경에서의 바이너리 CDMA 시스템 성능 분석)

  • Ko Jae-Yun;Lee Yong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.795-802
    • /
    • 2005
  • Binary CDMA(B-CDMA) is a new modulation scheme that employs a constant envelope modulation scheme By quantizing the envelope of multi-codes CDMA signal into a small number of levels, the B-CDMA can reduce the peak-to-average power ratio, while preserving the advantages of CDMA signaling such as the soft capacity and robustness to interference. In this paper, we analyze the performance of B-CDMA systems in multi-path channel assuming that the spreading factor is not too small. Finally, the analytic results are verified by computer simulation.

Design and performance evaluation of optimum TCM combined with CPM signals in the frequency-selective fading channel (주파수 선택성 페이딩 채널에서 CPM 신호와 결합된 최적 TCM의 설계 및 성능 평가)

  • 정영모;이상욱;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1064-1074
    • /
    • 1994
  • In this paper, an optimum TCM(trellis coded modulation)combined with CPM(continuous phase modulation) signal is investigated, and the performances are evaluated on the two-ray fading channel, which is one of the well-known frequency-selected because of their relatively good power and spectrum efficiency, and the modulation index is varied from 0.1 to 0.6. The performance is evaluated for each modulation index. The constraint length of the encoder, which is comprised in TCM, is chosen to be 2 and 3. From the performance evaluations, when the constraint length is 3 and modulation index 0.5, a power gain if the optimum TCM over the scheme without coding is observed to be 2.0dB for 1REC and 2.1dB for 3RC, respectively, on the fading channel. Thus, a significant improvement on the line quality is expected when the optimum TCM presented in this paper is employed in digital mobile radio applications.

  • PDF

Performance Analysis of the Underwater Acoustic Communication with Low Power Consumption by Sea Trials (해상실험을 통한 저전력 수중음향통신 기법의 성능 분석)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.811-816
    • /
    • 2011
  • In this paper, we analysis to consider the performance of PSPM (Phase Shift Pulse-position Modulation), the one of the low power communication technique, in near-field underwater sound channel by sea trial. PSPM is a QPSK(Quadrature Phase Shift Keying) modulation combined with PPM(Pulse Position Modulation) for low power communication in WBAN(Wireless Body Area Network). It is known that the bandwidth efficiency of PSPM is lower than conventional PSK but the power efficiency increases. In this paper, we will analyze the BER performance of PSPM using data acquired from the sea trials. The BER of QPSK was $6.04{\times}10^{-2}$, PSPM was $3.5{\times}10^{-1}$. Also, PSNR of QPSK was 9.37 dB and in case of PSPM was 9.11 dB.

Performance of 4-level Modulation Code for Holographic Data Storage (홀로그래픽 데이터 저장장치를 위한 4-레벨 변조 부호의 성능 비교)

  • Park, Keunhwan;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1672-1677
    • /
    • 2015
  • The multi-level holographic storage system can store more than one bit per pixel. In this paper, we introduce a 6-pixel 4-level modulation code and compare with 4-level 6/9 modulation code and 2/3 modulation code. The proposed 6-pixel modulation code has the minimum Euclidean distance 3. The 6-pixel modulation code is approximately 1dB better than the other modulation codes.