• Title/Summary/Keyword: B-SiC

Search Result 1,320, Processing Time 0.035 seconds

Room Temperature Strength and Crack Healing Morphology of Si3N4 Composite Ceramics with SiO2 Colloidal (SiO2 콜로이달에 의한 Si3N4 복합 세라믹스의 상온굽힘강도 및 균열치유 현상)

  • Nam, K.W.;Kim, J.S.;Lee, H.B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.652-657
    • /
    • 2009
  • Strength characteristics of $Si_3N_4$ composite ceramics has been studied as functions of heat-treatment temperature and additive $SiO_2$. $SiO_2$ colloidal could significantly increase the bending strength. Crack healing temperature decreased 300 K by additive $TiO_2$. Bending strength of specimen added $SiO_2$ is higher than that of non-added $SiO_2$. Moreover, bending strength of specimen with $SiO_2$ colloidal coating is much higher that of non-coated specimen. In in-situ observation, crack-healed specimen at 1,573 K shows phenomenon like a fog on the surface. By SPM, both crack-healed specimen, non-coating and coating of $SiO_2$ colloidal, at 1,273 K were healed completely but both of 1,573 K exist crack. This was made by evaporation of $SiO_2$ at high temperature. Crack-healing materials of $Si_3N_4$ composite ceramics is crystallized $Y_2Si_2O_7$, $Y_2Ti_2O_7$ and $SiO_2$. A large amount of Si and O, and little C were detected by EPMA. Si and O increase but C decreases according to heat treatment temperature. Specimens with additive $SiO_2$ were more detected Si and O than that of non-additive $SiO_2$. Specimen with $SiO_2$ colloidal coatings were much more detected O.

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

Characterization of Hot Electron Transistors Using Graphene at Base (그래핀을 베이스로 사용한 열전자 트랜지스터의 특성)

  • Lee, Hyung Gyoo;Kim, Sung Jin;Kang, Il-Suk;Lee, Gi Sung;Kim, Ki Nam;Koh, Jin Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.147-151
    • /
    • 2016
  • Graphene has a monolayer crystal structure formed with C-atoms and has been used as a base layer of HETs (hot electron transistors). Graphene HETs have exhibited the operation at THz frequencies and higher current on/off ratio than that of Graphene FETs. In this article, we report on the preliminary results of current characteristics from the HETs which are fabricated utilizing highly doped Si collector, graphene base, and 5 nm thin $Al_2O_3$ tunnel layers between the base and Ti emitter. We have observed E-B forward currents are inherited to tunneling through $Al_2O_3$ layers, but have not noticed the Schottky barrier blocking effect on B-C forward current at the base/collector interface. At the common-emitter configuration, under a constant $V_{BE}$ between 0~1.2V, $I_C$ has increased linearly with $V_{CE}$ for $V_{CE}$ < $V_{BE}$ indicating the saturation region. As the $V_{CE}$ increases further, a plateau of $I_C$ vs. $V_{CE}$ has appeared slightly at $V_{CE}{\simeq}V_{BE}$, denoting forward-active region. With further increase of $V_{CE}$, $I_C$ has kept increasing probably due to tunneling through thin Schottky barrier between B/C. Thus the current on/off ration has exhibited to be 50. To improve hot electron effects, we propose the usage of low doped Si substrate, insertion of barrier layer between B/C, or substrates with low electron affinity.

The Design of SiGe HBT LNA for IMT-2000 Mobile Application

  • Lee, Jei-Young;Lee, Geun-Ho;Niu, Guofu;Cressler, John D.;Kim, J.H.;Lee, J.C.;Lee, B.;Kim, N.Y.
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.22-27
    • /
    • 2002
  • This paper describes a SiGe HBT low noise amplifier (LNA) design for IMT-2000 mobile applications. This LNA is optimized for linearity in consideration of the out-of-band-termination capacitance. This LNA yields a noise figure of 1.2 dB, 16 dB gain, an input return loss of 11 dB, and an output return loss of 14.3 dB over the desired frequency range (2.11-2.17 GHz). When the RF input power is -2i dBm, the input third order intercept point (IIP3) of 8.415 dBm and the output third order intercept point (OIP3) of 24.415 dBm are achieved.

Properties of Glass-Ceramics in the System CaO-TiO2-SiO2 with the Additives of Al2O3, ZrO2 and B2O3 for Use in the Solid Oxide Fuel Cells.

  • Lee, Jun-Suk;Park, Min-Jin;Shin, Hyun-Ick;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.336-340
    • /
    • 1999
  • Glasses in the system $CaO-TiO_2-SiO_2-Al_2O_3-ZrO_2-B_2O_3$ were investigated to find the glass seal compositions suitable for use in the planar solid oxide fuel cell (SOFC). Glass-ceramics prepared from the glasses by one-stage heat treatment at $1,000^{\circ}C$ showed various thermal expansion coefficients (i,e., $8.6\times10^{-6^{\circ}}C^{-1}$ to $42.7\times10^{-6^{\circ}}C^{-1}$ in the range 25-$1,000^{\circ}C$) due to the viscoelastic response of glass phase. The average values of contact angles between the zirconia substrate and the glass particles heated at 1,000-$1,200^{\circ}C$ were in the range of $131^{\circ}\pm4^{\circ}$~$137^{\circ}\pm9^{\circ}$, indicating that the glass-ceramic was in partial non-wetting condition with the zirconia substrate. With increasing heat treatment time of glass samples from 0.5 to 24 h at $1,100^{\circ}C$, the DC electrical conductivity of the resultant glass-ceramics decreased from at $800^{\circ}C$. Isothermal hold of the glass sample at $1100^{\circ}C$ for 48h resulted in diffusion of Ca, Si, and Al ions from glass phase into the zirconia substrate through the glass/zirconia bonding interface. Glass phase and diffusion of the moving ion such as $Ca^{2+}$ in glass phase is responsible for the electrical conduction in the glass-ceramics.

  • PDF

High Temperature Fracture Mechanisms in Monolithic and Particulate Reinforced Intermetallic Matrix Composite Processed by Spray Atomization and Co-Deposition (분무성형공정에 의한 세라믹미립자 강화형 금속간화합물 복합재료의 고온파괴거동)

  • Chung, Kang;Kim, Doo-Hwan;Kim, Ho-Kyung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1713-1721
    • /
    • 1994
  • Intermetallic-matrix composites(IMCs) have the potential of combing matrix properties of oxidation resistance and high temperature stability with reinforcement properties of high specific strength and modulus. One of the major limiting factors for successful applications of these composite at high temperatures is the formation of interfacial reactions between matrix and ceramic reinforcement during composite process and during service. The purpose of the present investigation is to develop a better understanding of the nature of creep fracture mechanisms in a $Ni_{3}Al$ composite reinforced with both $TiB_{2}$ and SiC particulates. Emphasis is placed in the roles of the products of the reactions in determining the creep lifetime of the composite. In the present study, creep rupture specimens were tested under constant ranging from 180 to 350 MPa in vacuum at $760^{\cric}C$. The experimental data reveal that the stress exponent for power law creep for the composite is 3.5, a value close to that for unreinforced $Ni_{3}Al$. The microstructural observations reveal that most of the cavities lie on the grain boundaries of the $Ni_{3}Al$ matrix as opposed to the large $TiB_{2}/Ni_{3}Al$ interfaces, suggesting that cavities nucleate at fine carbides that lie in the $Ni_{3}Al$ grain boundaries as a result of the decomposition of the $SiC_{p}$. This observation accounts for the longer rupture times for the monolicthic $Ni_{3}Al$ as compared to those for the $Ni_{3}Al/SiC_{p}/TiB_{2} IMC$. Finally, it is suggested that creep deformation in matrix appears to dominate the rupture process for monolithic $Ni_{3}Al$, whereas growth and coalescence of cavities appears to dominate the rupture process for the composite.

A Study on the Physical Properties of xB2O3-yBi2O3-zPbO-5SiO2 Glass System (xB2O3 -yBi2O3-zPbO-5SiO2계 유리의 전기적인 특성)

  • Joung, Maeng Sig;Ju, Kyung Bok;Lee, Nam Han
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.111-117
    • /
    • 2001
  • The temperature dependence of dielectric constant and electrical conductivity for the BBPS glasses system was studied over a temperature range between $30^{\circ}C$ and $500^{\circ}C$ and at a frequency ranged from $10^3$ Hz to $10^7$ Hz. The dielectric constant ${\varepsilon}$ at room temperature of $xB_2O_3-yBi_2O_3-zPbO-5SiO_2 $ glasses was measured to be 15 at $10^5$ Hz for all samples and found to be almost frequency independent. At the relatively low temperature ranger (<$70^{\circ}C$), the dielectric constant was almost temperature independent and above that it increased with increasing temperature: the rate of increase being different at different frequencies. This behavior could be explained on the basis of the presence of molecular dipoles. The dielectric constant was found to depend on the composition as well as the crystalline phases formed in the glass matrix.

  • PDF

Influence of Humidity Variation on the Surface Deffects and Soft Magnetic Properties in the Fabrication of Fe Based Amorphous Alloy Ribbon by the PFC Process (PFC프로세스 의한 Fe기 Fe78Si9B13 비정질 합금리본 제조에 있어서 습도변화가 표면결함 및 연자기적 특성에 미치는 영향)

  • Choi, Y.J.;Jang, S.J.;Kim, S.W.;Jeon, B.S.;Kim, S.M.;Song, C.B.;Kim, Y.C.;Namkung, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.4-9
    • /
    • 2015
  • This study was carried out to investigate a influence of humidity variation (%) on the magnetic properties and the surface flaws in the fabrication of Fe-based $Fe_{78}Si_9B_{13}$ amorphous alloy ribbon by Planar Flow Casting process. As a result, the size of the air pocket and the droplet which is observed in the contact surface and the free face of the amorphous alloy ribbon becomes large when the humidity increases and the size highly increases with the surface roughness at the same time. Especially, the surface roughness value which is made in the 65 % of the humidity is the lowest in the contact surface ($Ra=0.60{\mu}m$, $Rz=3.11{\mu}m$) and the free face ($Ra=0.47{\mu}m$, $Rz=3.00{\mu}m$). Also, in case of the soft magnetic property of the magnetic core which is made with the toroidal core of $23(OD)^*20(ID)^*20(H)$ size, in the sample of the amorphous alloy ribbon which is made in 65% of the humidity, the most excellent value is gained as $B_s(B_{700})=1.055T$, $H_c=0.083Oe$, permeability = 1,197 and core loss = 0.276W/kg.

The Effect of Patenting Conditions on the Tensile Property of High Carbon Steels added with Si (Si 첨가 고탄소강의 인장 성질에 미치는 패턴팅 조건의 영향)

  • Lee, J.B.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.49-58
    • /
    • 1993
  • Isothermal transformation behavior during patenting and variations of microstructure and tensile strength of patented wires were investigated in Si-added high carbon steel. The TTT curves of the steels were made for two different austenitizing temperature. As the salt bath temperature was increased, the observed microstructures were bainite at $450^{\circ}C$, the mixture of bainite and pearlite at $500^{\circ}C$, and to pearlite at $600^{\circ}C$, The tensile strength of patented wire exhibited the highest value when the structure was pearlite. while the bainitic structure showed the lowest.

  • PDF

Crystal Growth and Phase Transition of Piezoelectric $KAlSiO_4$ (압전성 $KAlSiO_4$ 단결정 육성 및 상변화)

  • 오광석;박봉모;정수진;이태근;박병규;김호성
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.362-370
    • /
    • 1996
  • Kalsilite (KAlSiO4) system undergoes a displacive phase transition from hexagonal phase with p63 space group to the phase with P63mc at 886$^{\circ}C$. The flux composition having kalsilite :K2O:B2O3=1:2:2 has enabled the growth of hexagonal kalsilite with the size of 0.5~1 mm at a slow cooling rate (0.3$^{\circ}C$/hr). On decreasing the cooling rate the size has increased and pyramidal (1011) faces are newly developed with the shape of (0001) and (1010) faces. Upon stirring (1011) faces are degraded. The space group of O1 and O2 are P21221 and C2221 respectively. Their orthorombic modification O1 and O2 are synthesized at relatively low and high temperature respectively.

  • PDF