• Title/Summary/Keyword: B-스플라인

Search Result 138, Processing Time 0.024 seconds

On the Prediction of the Sales in Information Security Industry

  • Kim, Dae-Hak;Jeong, Hyeong-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1047-1058
    • /
    • 2008
  • Prediction of total sales in information security industry is considered. Exponential smoothing and spline smoothing is applied to the time series of annual sales data. Due to the different survey items of every year, we recollect the original survey data by some basic criterion and predict the sales to 2014. We show the total sales in infonnation security industry are increasing gradually by year.

  • PDF

A study on selection of tensor spline models (텐서 스플라인 모형 선택에 관한 연구)

  • 구자용
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.2
    • /
    • pp.181-192
    • /
    • 1992
  • We consider the estimation of the regression surface in generalized linear models based on tensor-product B-splines in a data-dependent way. Our approach is to use maximum likelihood method to estimate the regression function by a function from a space of tensor-product B-splines that have a finite number of knots and are linear in the tails. The knots are placed at selected order statistics of each coordinate of the sample data. The number of knots is determined by minimizing a variant of AIC. A numerical example is used to illustrate the performance of the tensor spline estimates.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.

Application of the B-Spline Based High Order Panel Method to the Floating Body Dynamics (B 스플라인 고차 패널법을 적용한 부유체 운동해석)

  • Ahn, Byoung-Kwon;Lew, Jae-Moon;Lee, Hyun-Yup;Lee, Chang-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.25-30
    • /
    • 2008
  • A B-spline based high order panel method was developed for the motion of bodies in an ideal fluid, either of infinite extent or with a free boundarysurface. In this method, both the geometry and the potential are represented by the B-spline, which guarantees more accurate results than most potential based low order methods. In the present work, we applied this B-spline based high order method to the radiation problem of floating bodies. The boundary condition on the free surface was satisfied by adopting a Kelvin-type Green function and irregular frequencies were removed by placing additional control points on the free surface surrounding the body. The numerical results were validated by comparison with existing numerical and experimental results.

Classical testing based on B-splines in functional linear models (함수형 선형모형에서의 B-스플라인에 기초한 검정)

  • Sohn, Jihoon;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.607-618
    • /
    • 2019
  • A new and interesting task in statistics is to effectively analyze functional data that frequently comes from advances in modern science and technology in areas such as meteorology and biomedical sciences. Functional linear regression with scalar response is a popular functional data analysis technique and it is often a common problem to determine a functional association if a functional predictor variable affects the scalar response in the models. Recently, Kong et al. (Journal of Nonparametric Statistics, 28, 813-838, 2016) established classical testing methods for this based on functional principal component analysis (of the functional predictor), that is, the resulting eigenfunctions (as a basis). However, the eigenbasis functions are not generally suitable for regression purpose because they are only concerned with the variability of the functional predictor, not the functional association of interest in testing problems. Additionally, eigenfunctions are to be estimated from data so that estimation errors might be involved in the performance of testing procedures. To circumvent these issues, we propose a testing method based on fixed basis such as B-splines and show that it works well via simulations. It is also illustrated via simulated and real data examples that the proposed testing method provides more effective and intuitive results due to the localization properties of B-splines.

A Study on the Multiresolutional Coding Based on Spline Wavelet Transform (스플라인 웨이브렛 변환을 이용한 영상의 다해상도 부호화에 관한 연구)

  • 김인겸;정준용;유충일;이광기;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2313-2327
    • /
    • 1994
  • As the communication environment evolves, there is an increasing need for multiresolution image coding. To meet this need, the entrophy constratined vector quantizer(ECVQ) for coding of image pyramids by spline wavelet transform is introduced in this paper. This paper proposes a new scheme for image compression taking into account psychovisual feature both in the space and frequency domains : this proposed method involves two steps. First we use spline wavelet transform in order to obtain a set of biorthogonal subclasses of images ; the original image is decomposed at different scale using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vectored quantized using a multi-resolution ECVQ(entropy-constrained vector quantizer) codebook. The simulation results showed that the proposed method could achieve higher quality LENA image improved by about 2.0 dB than that of the ECVQ using other wavelet at 0.5 bpp and, by about 0.5 dB at 1.0 bpp, and reduce the block effect and the edge degradation.

  • PDF

Curve Reconstruction from Oriented Points Using Hierarchical ZP-Splines (계층적 ZP-스플라인을 이용한 곡선 복구 기법)

  • Kim, Hyunjun;Kim, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.5
    • /
    • pp.1-16
    • /
    • 2016
  • In this paper, we propose and efficient curve reconstruction method based on the classical least-square fitting scheme. Specifically, given planar sample points equipped with normals, we reconstruct the objective curve as the zero set of a hierarchical implicit ZP(Zwart-Powell)-spline that can recover large holes of dataset without loosing the fine details. As regularizers, we adopted two: a Tikhonov regularizer to reduce the singularity of the linear system and a discrete Laplacian operator to smooth out the isocurves. Benchmark tests with quantitative measurements are done and our method shows much better quality than polynomial methods. Compared with the hierarchical bi-quadratic spline for datasets with holes, our method results in compatible quality but with less than 90% computational overhead.

Development of a Branch-and-Bound Global Optimization Based on B-spline Approximation (비스플라인 분지한계법 기반의 전역최적화 알고리즘 개발)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.191-201
    • /
    • 2010
  • This paper presents a new global optimization algorithm based on the branch-and-bound principle using Bspline approximation techniques. It describes the algorithmic components and details on their implementation. The key components include the subdivision of a design space into mutually disjoint subspaces and the bound calculation of the subspaces, which are all established by a real-valued B-spline volume model. The proposed approach was demonstrated with various test problems to reveal computational performances such as the solution accuracy, number of function evaluations, running time, memory usage, and algorithm convergence. The results showed that the proposed algorithm is complete without using heuristics and has a good possibility for application in large-scale NP-hard optimization.

Study of the Shape Optimization in Spline FEM Considering both NURBS Control Point Positions and Weights as Design Variables (NURBS 제어점의 위치 및 가중치를 설계변수로 하는 스플라인 유한요소법 기반 형상최적설계 연구)

  • Song, Yeo-Ul;Hur, Jun Young;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • A new NURBS-based shape optimization method is proposed. Most shape optimization studies consider only control point positions as design variables. Some shape optimization processes present problems with mesh quality and convergence when control points are constrained to a limited space. If the weights of the control points are regarded as additional design variables, it should be possible to attain a better degree of shape control. In this study, positions and weights of NURBS control points are used as design variables, and a shape optimization algorithm incorporates position optimization and weight optimization steps. This method is applied to shape optimization benchmarking problems to verify its advantages.

A Study on High Resolution Reconstruction Algorithms for improving Resolution (해상도 향상을 위한 고해상도 복원 알고리즘 연구)

  • Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • In this paper, It propose a new restoration algorithm of high resolution, which is reconstructed to high resolution image using low resolution image informations. The proposed algorithm is constructed based on super resolution theory, it is consisted of progressive steps of the integration and construction. It reduced a lot of data-processing capacity and noise with integration through sub-pixel movement and wavelet basis through a higher resolution. As a result, it is shown that the main information is maintained and the error rate is improved. Using expansion fuzzy wavelet B-spline interpolation in stage of construction, it is confirmed that we can achieve smoothing image and good resolution without blur and block.