• Title/Summary/Keyword: B cell

Search Result 8,520, Processing Time 0.042 seconds

The Effects on Immune Cell of Short-Term Aerobic Exercise by Exercise Intensity and Expenditures Calorie (운동 강도와 에너지소비량에 따른 단기간의 유산소운동이 면역세포에 미치는 영향)

  • Lee, jung-ja;Cho, jung-yeon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.274-280
    • /
    • 2008
  • The study of subjects were 8 persons. The study measured VO2max of each person and substituted METs at exercise intensity of both VO2max 50% and VO2max 70% in accordance with energy consumption formula to set exercise time at energy consumption of both 300kcal and 600kcal. And, the study substituted inclination and rate at exercise intensity that was measured at preliminary test. T, B, NK cell varied depending upon aerobic exercise to have no significant difference of exercise intensity at relative ratio of T, B, NK lymphocyte of all of lymphocytes and to have significant difference of Expenditures Calorie (p<.01) and interaction (p<.05) by T cell and Expenditures Calorie (p<.01) by B cell and Expenditures Calorie (p <.001) and interaction (p<.05) by NK cell.

  • PDF

Reduction of Cell Membrane Toxicity of Amphotericin B Using Micelle,Liposome and Polyethyene Glycol (Micelle, Liposome, Polythylene Glycol을 이용한 Amphotericin B의 세포막 독성저하)

  • Park, In-Chul;Lee, Pan-Jong;Yang, Ji-Won;Kim, Jong-Deuk;Choe, Tae-Boo
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.290-295
    • /
    • 1994
  • Micelle, liposome and polyethylene glycol(PEG) were employed to reduce the cell mem- brane toxicity of Amphotericin B(Amp. B). Cholesterol-sulfate which can form a mixed micelle with Amp. B molecules was found very effective for the reduction of Amp. B toxicity. 0.01% of cholesterol-sulfate could reduce the toxicity of 5X 10$^{-6}$ M Amp. B by 90%. The required concent- ration of cholesterol-sulfate for the toxicity reduction was proportionally increased with increasing Amp. B concentration. PEG was also effective on the reduction of Amp. B toxicity. 2% PEG was required for the reduction of toxicity by 50%, regardless of Amp. B concentration. The liposome system showed an effective reduction of Amp. B toxicity on RBC, maintaining the antibiotic effect on Candida albicans as free drugs. This seems to be due to the fact that liposome bilayer plays a role of buffer system between ergosterol of fungi cell membrane and cholesterol of red blood cell membrane, which leads the redistribution of Amp. B between them, as the result, the reduction of drug toxicity on cell membrane.

  • PDF

Knockdown of Cdc25B in Renal Cell Carcinoma is Associated with Decreased Malignant Features

  • Yu, Xiu-Yue;Zhang, Zhe;Zhang, Guo-Jun;Guo, Kun-Feng;Kong, Chui-Ze
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.931-935
    • /
    • 2012
  • Cdc25 phosphatases are important regulators of the cell cycle. Their abnormal expression detected in a number of tumors implies that their dysregulation is involved in malignant transformation. However, the role of Cdc25B in renal cell carcinomas remains unknown. To shed light on influence on renal cell carcinogenesis and subsequent progression, Cdc25B expression was examined by real-time RT-PCR and western blotting in renal cell carcinoma and normal tissues. 65 kDa Cdc25B expression was higher in carcinomas than in the adjacent normal tissues (P<0.05), positive correlations being noted with clinical stage and histopathologic grade (P<0.05). To additionally investigate the role of Cdc25B alteration in the development of renal cell carcinoma, Cdc25B siRNA was used to knockdown the expression of Cdc25B. Down-regulation resulted in slower growth, more G2/M cells, weaker capacity for migration and invasion, and induction of apoptosis in 769-P transfectants. Reduction of 14-3-3 protein expression appeared related to Cdc25B knockdown. These findings suggest an important role of Cdc25B in renal cell carcinoma development and provide a rationale for investigation of Cdc2B-based gene therapy.

Inhibitory Effect of Soyosangagamhwajae on Melanin Synthesis and its Action Mechanism in B16F10 Mouse Melanoma Cell (소요산가감화제(逍遙散加減化製)의 멜라닌 생성 억제와 작용기전에 관한 연구)

  • Kim, Eun-Seop;Lim, Hyun-Jung;Shin, Sun-Mi;Kim, Soo-Min;Lee, Jung-Eun;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.1
    • /
    • pp.83-98
    • /
    • 2008
  • Purpose: This study was performed to determine the inhibitory effect of Soyosangagamhwajae(SYG) on melanin synthesis in B16F10 mouse melanoma cell. Methods: The Inhibitory effects of Soyosangagamhwajae(SYG) on melanin synthesis were determined by in-vitro assay. To elucidate inhibitory effects of SYG on melanin synthesis, we determined the melanin release in B16F10 cell. And to investigate the action mechanism, we assessed the gene expression of tyrosinase, TRP-1, TRP-2. PKA, $PKC{\beta}$ in B16F10 cell. Results: 1. SYG significantly inhibited melanin-release in B16F10 cell. 2. SYG significantly inhibited mushroom tyrosinase activity in vitro. 3. SYG significantly suppressed the expression of tyrosinase in B16F10 cell. 4. SYG significantly suppressed the expression of TRP-1, TRP-2 in B16F10 cell. 5. SYG significantly suppressed the expression of PKA, $PKC{\beta}$ in B16F10 cell. Conclusion: From these results, it may be concluded that SYG has the antimelanogenetic effect.

  • PDF

A Rice Blast Fungus Alpha-N-Arabinofuranosidase B Elicits Host Defense in Rice

  • Kim, Sun-Tae
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.23-23
    • /
    • 2015
  • Rice blast disease caused by M. oryzae is the most devastating fungal disease in rice. During the infection process, M. oryzae secretes a large number of glycosyl hydrolase (GH) proteins into the apoplast to digest host cell wall and assist fungal ingress into host tissues. In this study, we identified a novel M. oryze arabinofuranosidase B (MoAbfB) which is secreted during fungal infection. Live-cell imaging exhibited that fluorescent labeled MoAbfB was highly accumulated in fungal invasive structures such as appressorium, tips of penetration peg, biotrophic interfacial complex (BIC), as well as invasive hyphal tip. Deletion of MoAbfB mutants extended biotrophic phase followed by enhanced disease severity, whereas, over-expression of OsMoAbfB mutant induced rapid defense responses and enhanced rice resistance to M. oryzae infection. Furthermore, exogenous treatment of MoAbfB protein showed inhibition of fungal infection via priming of defense gene expression. We later found that the extract of MoAbfB degraded rice cell wall fragments could also induce host defense activation, suggesting that not MoAbfB itself but oligosaccharides (OGs) derived from MoAbfB dissolved rice cell wall elicited rice innate immunity.

  • PDF

Effect of Dexamethasone on the Surface Expression of Marker Molecules and Differentiation of Murine B Cells (덱사메타손이 생쥐 B세포의 세포 표면 인식자와 분화에 미치는 영향)

  • Yeo, Seung-Geun;Cha, Chang-Il;Park, Dong-Choon
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.138-144
    • /
    • 2006
  • Background: There are at least two different subsets of B cells, B-1 and B-2. The characteristic features and function of B-2 cells in addition to the effect of steroids on B-2 cells are well-known. Although B-1 cells have different features and functions from B-2 cells, the effect of steroids on B-1 cells is not completely understood. Therefore, this study examined the effects of dexamethasone on peritoneal (or B-1 cells) and splenic B cells (or B-2 cells). Methods: Purified B cells were obtained from the peritoneal fluid and the spleens of mice. The isolated B cells were cultured in a medium and after adding different concentrations of dexamaethasone. The cell survival rate was measured by flow cytometry using propidium iodide. The expression level of the B cell surface marker was analyzed by flow cytometry. During the culture of these cells, immunoglobulin secreted into the culture supernatants was evaluated by an enzyme-linked immunosorbent assay. Results: The survival rate of peritoneal and splenic B cells decreased with increasing dexamethasone concentration. However, the rate of peritofieal B cell apoptosis was lower than that of splenic B cells. CDS and B7.1 expression in peritoneal B cells and CD23 and sIgM expression in splenic B cells after the dexamethasone treatment were reduced. When B cells were treated with dexamethasone, the spontaneous IgM secretion decreased with increasing dexamethasone concentration. Conclusion: Dexamethasone induces apoptosis in peritoneal and splenic B cells. However, peritoneal B cells are less sensitive to dexamethasone. The dexamethasone suppressed expression of the surface markers in peritoneal B cells is different from those in splenic B cells.

Selective Accumulation of Rhodamine B in Müller cells in Rabbit Retina (Rhodamine B 염료의 토끼 망막 뮬러세포에 대한 선택적 염색)

  • Kwon, Oh Ju;Lee, Eun Shil;Jeon, Chang Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.91-95
    • /
    • 2011
  • Purpose: In this study, we investigated the dye to staining for selective accumulation in rabbit retina. Methods: Rhodamine B was injected into the vitreous body in rabbit. After 24 h, the isolated retina was checked condition of cell staining on the microscope. We used conventional immunocytochemical techniques for recognizing cell type. Results: Well-labeled nuclei were seen in the middle of the inner nuclear layer of the rabbit retina. The number and distrbution of the accumulating cells were similar to those of the m$\ddot{u}$ller glia. To identify m$\ddot{u}$ller cell, we used antibody directed against vimentin. Rhodamine B-immunoreactive nuclei also were labeled with antivimentin antibody. We found that Rhodamine B was accumulated selectively in retinal m$\ddot{u}$ller cell. Conclusions: Specific accumulation in rabbit retinal m$\ddot{u}$ller cell occurred when Rhodamine B was applied to living retina.

Functional characterization of the distal long arm of laminin: Characterization of Cell- and heparin binding activities

  • Sung, Uhna;O′Rear, Julian J.;Yurchenco, Peter D.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.107-113
    • /
    • 1995
  • Basement membrane laminin is a multidomain glycoprotein that interacts with itself, heparin and cells. The distal long arm plays major cell and heparin interactive roles. The long arm consists of three subunits (A, B1, B2) joined in a coiled-coil rod attached to a terminal A chain globule (G). The globule is in turn subdivided into five subdomains (Gl-5). In order to analyze the functions of this region, recombinant G domains (rG, rAiG, rG5, rGΔ2980-3028) were expressed in Sf9 insect cells using a baculovirus expression vector. A hybrid molecule (B-rAiG), consisting of recombinant A chain(rAiG) and the authentic B chains (E8-B)was assembled in vitro. The intercalation of rAiG into E8-B chains suppressed a heparin binding activity identified in subdomain Gl-2. By the peptide napping and ligand blotting, the relative affinity of each subeomain to heparin was assigned as Gl> G2= G4> G5> G3, such that G1 bound strongly and G3 not at all. The active heparin binding site of G domain in intact laminin appears to be located in G4 and proximal G5. Cell binding was examined using fibrosarcoma Cells. Cells adhered to E8, B-rAiG, rAiG and rG, did not bind on denatured substrates, poorly bound to the mixture of E8-B and rG. Anti-${\alpha}$6 and anti-${\beta}$1 integrin subunit separately blocked cell adhesion on E8 and B-rAiG, but not on rAiG. Heparin inhibited cell adhesion on rAiG, partially on B-rAiG, and not on E8. In conclusion, 1) There are active and cryptic cell and heparin binding activities in G domain. 2) Triple-helix assembly inactivates cell and heparin binding activities and restores u6131 dependent cell binding activities.

  • PDF

Nitric Oxide Prevents the Bovine Cerebral Endothelial Cell Death Induced by Serum-Deprivation

  • Kim, Chul-Hoon;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.515-521
    • /
    • 1997
  • Endothelial cells play a central role in the inflammatory processes, and activation of nuclear factor kappa B ($NF-_{\kappa}B$) is a key component in that inflammatory processes. Previously, we reported that tumor necrosis factor alpha($TNF{\alpha}$) had protective effect of cell death induced by serum deprivation and this protection was related to $NF-_{\kappa}B$ activation. Inducible nitric oxide synthase (iNOS) is a member of the molecules which transcription is regulated mainly by $NF-_{\kappa}B$. And the role of nitric oxide (NO) generated by iNOS on cell viability is still controversial. To elucidate the mechanism of $TNF{\alpha}$ and $NF-_{\kappa}B$ activation on cell death protection, we investigate the effect of NO on the cell death induced by serum- deprivation in bovine cerebral endothelial cells in this study. Addition of $TNF{\alpha}$, which are inducer of iNOS, prevented serum-deprivation induced cell death. Increased expression of iNOS was confirmed indirectly by nitrite measurement. When selective iNOS inhibitors were treated, the protective effect of $TNF{\alpha}$ on cell death was partially blocked, suggesting that iNOS expression was involved in controlling cell death. Exogenously added NO substrate (L-arginine) and NO donors (sodium nitroprusside and S-nitroso-N-acetylpenicillamine) also inhibited the cell death induced by serum deprivation. These results suggest that NO has protective effect on bovine cerebral endothelial cell death induced by serum-deprivation and that iNOS is one of the possible target molecules by which $NF-_{\kappa}B$ exerts its cytoprotective effect.

  • PDF

Application of Immunophenotyping and Heteroduplex Polymerase Chain Reaction (hPARR) for Diagnosis of Canine Lymphomas

  • Sirivisoot, Sirintra;Techangamsuwan, Somporn;Tangkawattana, Sirikachorn;Rungsipipat, Anudep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2909-2916
    • /
    • 2016
  • Background: Canine malignant lymphoma is classified into B- or T-cell origin, as in the human case. Due to differences in prognosis, a suitable method needs to be developed for lineage identification. Aims: To determine the accuracy of immunophenotypic and molecular information between three methods: immunocytochemistry (ICC), immunohistochemistry (IHC) and heteroduplex polymerase chain reaction for antigen receptor rearrangements (hPARR) in spontaneous canine lymphomas. Materials and Methods: Peripheral blood, fine needle aspiration and tissue biopsies from enlarged peripheral lymph nodes prior to treatment of 28 multicentric lymphoma patients were collected. Cytopathology and histopathology were examined and classified using the updated Kiel and WHO classifications, respectively. Anti-Pax5 and anti-CD3 antibodies as B- and T-cell markers were applied for immunophenotyping by ICC and IHC. Neoplastic lymphocytes from lymph node and white blood cell pellets from peripheral blood were evaluated by hPARR. Results: In this study, low grade B-cell lymphoma accounted for 25% (7/28), high grade B-cell lymphoma for 64.3% (18/28) and high grade T-cell lymphoma for 10.7% (3/28). According to the WHO classification, 50% of all cases were classified as diffuse large B-cell lymphoma. In addition, ICC showed concordant results with IHC; all B-cell lymphomas showed Pax5+/CD3, and all T-cell lymphomas exhibited Pax5-/CD3+. In contrast to hPARR, 12 B-cell lymphomas featured the IgH gene; seven presented the $TCR{\gamma}$ gene; five cases showed both IgH and $TCR{\gamma}$ genes, and one case were indeterminate. Three T-cell lymphomas showed the $TCR{\gamma}$ gene. The percentage agreement between hPARR and ICC/IHC was 60%. Conclusions: Immunophenotyping should not rely on a single method. ICC or IHC with hPARR should be used concurrently for immunophenotypic diagnosis in canine lymphomas.