• Title/Summary/Keyword: Axisymmetric shell element

Search Result 53, Processing Time 0.019 seconds

Three-Dimensional Structural Analysis System for Nuclear Containment Building (원자로 격납건물의 3차원 구조해석시스템)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.235-243
    • /
    • 2010
  • Three-dimensional structural analysis system for nuclear containment building is presented in this paper. This system includes high-performance plate/shell elements as finite element library. It also adopts numerical modeling technique for unbonded tendon as well as bonded tendon in prestressed concrete structures. This system is constructed by connecting several in-house program to a commercial program DIANA, and then is capable of performing nonlinear analysis for ultimate pressure capacity of nuclear containment building. Finally, three-dimensional structural analysis of CANDU-type containment building is carried out in order to test the reliability of this system. These numerical results are compared with reference values, which obtained from axisymmetric structural analysis.

An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE approach

  • Errico, Fabrizio;Franco, F.;Ichchou, M.;De Rosa, S.;Petrone, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.463-478
    • /
    • 2019
  • The present work investigates the effect on the flow-induced vibrations of the lay-up sequence of composite laminated axisymmetric structures, using an hybrid approach based on a wave finite element and a transfer matrix method. The structural vibrations, under deterministic distributed pressure loads, diffuse acoustic field and turbulent boundary layer excitations, are analysed and compared. A multi-scale approach is used for the dynamic analysis of finite structures, using an elementary periodic subsystem. Different flow regimes and shell curvatures are analysed and the computational efficiency is also discussed.

Optimal Design of Filament Wound Composite CNG Pressure Vessel (필라멘트 와인딩 복합재 CNG 압력용기의 최적설계)

  • Yun, Yeong-Bok;Jo, Seong-Won;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Abstract The optimization is performed to reduce the mass of CNG pressure vessel reinforced with composite materials in the hoop direction. An axisymmetric shell element which takes into account the layered liner and hoop composite materials is thus developed and incorporated into a program Axicom. The accuracy of the program is then verified using the 4 noded element in ANSYS. Three different cases of optimization are then performed using the Axicom: (1) uniform hoop thickness, (2) varying hoop thickness, and (3) varying the ply angles and accordingly the thickness. Compared with a traditional method, cases (2) and (3) were found to be very effective in reducing the thickness and cost of the hoop composite materials by about 80% without sacrificing the safety factors.

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(I) (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구 (I) -기하학적 형상에 따른 동적 특성-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.113-121
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form. Therefore, the stress analysis of thin shell has been one of the more challenging areas of structural mechanics. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical Shell. For these purpose, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic dynamic response. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows: 1. The dynamic characteristics with a/H, 1) As the a/H increases, the amplitude of displacement increased. 2) The values of displacement Dynamic Magnification Factor (DMF) range from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell range from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point of shell is increased gradually. 4) The values of DMF of hoop-stresses range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell range from 2.3 to 2.6, the values of DMF of stress were larger than that of displacement. 2. The dynamic characteristics with t/R, 1) With the decrease of thickness of shell decreses, the amplitude of the displacement and the period increased. 2) The values of DMF of the displacement were range from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were range from 2.1 to 2.2.

  • PDF

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection - (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 -)

  • Cho, Jin-Goo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.

An Analysis of Axisymmetric Cylindrical Shell by the Leading Matrix Method (인도행렬에 의한 축대칭 원통형 쉘의 해석)

  • 이관희;박준용;김우중
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.193-201
    • /
    • 2004
  • The aim of this study is focused on getting an almost exact solution which is the simplicity and exactness of an axisymmetrically loaded cylindrical shell. This method replaces the finite element method which is a very powerful tool for analysis of any kind of structure which has an arbitrary shape, but is still a numerical analysis. Instead, this study uses the method of distribution of end actions which is a kind of iteration technique to implement the leading matrix method. The distribution and carry-over factors of a cylinder are calculated by the theory of a differential equation of a beam on an elastic foundation. The results are satisfactory when this method is applied to a cylinder that is subjected to a concentrated load and hydrostatic pressure when compared with the BEF analogy separately.

A Robustness of Hierarchic Element Formulated by Integral s of Legendre Polynomial (적분형 르장드르 함수에 의한 계층요소의 통용성)

  • 우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.75-80
    • /
    • 1991
  • The purpose of this study is to ascertain the robustness of p-version model with hierarchic intergrals of Legendre shape functions in various applications including plane stress/strain, axisymmetric and shell problems. The most important symptoms of accuracy failure in modern finite elements are spurious mechanisms and a phenomenon known as locking which are exhibited for incompressible materials and irregular shapes which contain aspect ratios(R/t, a/b), tapered ratio(d/b), and skewness. The condition numbers and energy norms are used to estimate numerical errors, convergence characteristics and algorithmic efficiencies for verifying the aforementioned symptoms of accuracy failure. Numerical results from p-version models are compared wi th those from NASTRAN, SAP90, and Cheung's hybrid elements.

  • PDF

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on an Elastic Foundation - With Application to the Nuclear Reinforced Concrete Containment Structures- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(I) -철근 콘크리트 원자로 격납 건물을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.82-91
    • /
    • 1996
  • This is a basic study for the static and dynamic analysis on the elasto-plastic and elasto-viscoplastic of an axi-symmetric shell. The objective of this study was to investigate the mechanical characteristics of a nuclear reinforced concrete containment structure, which was selected as a model, by a numerical analysis using a finite element method. The structure was modeled with discrete ring elements of 8-noded isoparametric element rotating against the symmetrical axis, and the interaction between the foundation and the structure was modeled by Winkler's model. Also, the meridional tendon was modeled with 2-node truss elements, and the hoop tendon was done with point elements in two degrees of freedom. The effect of the tendon was considered without the increasement in total degree of freedom as the stiffness matrix of modeled tendon elements was assembled on the stiffness matrix of ring elements linked with the tendon. The results obtained from the analysis of an example were summarized as follows : 1. The stresses in the hoop direction on the interior and exterior surfaces of the structure were shown in changes of similar trend, and high stresses appeared on the structure wall 2. The stresses in the meridional direction on the interior and exterior surfaces were shown in change of different trend. Especially, the stresses at the junctions between the dome and the wall and between the wall and the bottom plate of the structure were very high, compared with those at other parts of the structure. 3. The stress changes in the direction of thickness on the crown of the dome were much linearly distributed. However, as the amount of tendon increased, the stresses in the upper and lower parts of the wall established with the tendon were shown stress concentration. 4. The stress changes in the direction of thickness on the center of the structure wall was linearly distributed in the all cases, and special stress due to the use of the tendon was not shown.

  • PDF