• 제목/요약/키워드: Axisymmetric flow

Search Result 488, Processing Time 0.027 seconds

A Numerical Analysis on the Hemodynamic Characteristics in the blood vessel with Stenosis (협착부가 존재하는 혈관의 유동 특성에 관한 수치 해석적 연구)

  • Jung, H.;Park, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1987-1992
    • /
    • 2004
  • Hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If stenosis is present in an artery, normal blood flow is disturbed. In the present study, characteristics of steady and pulsatile flow of non-Newtonian fluid, the effects of stenosised geometry are analyzed by numerical simulation. One interesting point is that non-symmetric solutions were obtained at severity stenosis, although the stenosis and the boundary condition were all axisymmetric.

  • PDF

A Study for the Measurement of a fluid Density in a ripe Using Elastic Waves

  • Kim, Jin-Oh;Hwang, Kyo-Kwang;Bau, Haim-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.583-593
    • /
    • 2003
  • The effect of liquid confined in a pipe on elastic waves propagating in the pipe wall was studied theoretically and experimentally. The axisymmetric motion of the wave was modeled with the cylindrical membrane shell theory. The liquid pressure satisfying the axisymmetric wave equation was included in the governing equation as a radial load. The phase speed of the wave propagating in the axial direction was calculated, accounting for the apparent mass of the liquid. Experiments were performed in a pipe equipped with ring-shaped, piezoelectric transducers that were used for transmitting and receiving axisymmetric elastic waves in the pipe wall. The measured wave speeds were compared with the analytical ones. This work demonstrates the feasibility of using pipe waves for the determination of the density and, eventually, the flow rate of the liquid in a pipe.

Finite Element Analysis of Solidification Processes of Axisymmetric Castings Considering Phase Change and Contact (상변화와 접촉을 고려한 축대칭 주조 응고공정의 유한요소 해석)

  • Ghoo, B.Y.;Keum, Y.T.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.126-141
    • /
    • 1997
  • The purpose of this research is to develope a FEM program for analyzing solidification processes of axisymmetric casting, considering phase changes and the contact between the metal and mold. Tempera- ture recovery method is employed fro considering the phase changes releasing the latent heat and the coin- cident node method is used for calculating the amount of heat transfer between the metal and mold. Tan- gent modulus algorithm is adopted for calculating flow stress and a gap element is employed for modeling the interface between the mold and metal in finding deformed shapes. In order to verify the developed program, axisymmetric aluminum and steel casting processes are simulated. Temperature distribution, phase front position, and shrinkage and porosity creation are compared with measurements, FIDAP results, and good agreements are examined.

  • PDF

Study on Correction of Optical Distortion for Flow Visualization inside Axisymmetric Droplet (액적 내부 유동 가시화를 위한 축대칭 형상 왜곡 보정에 관한 연구)

  • Gim, Yeonghyeon;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • Optical distortion of experimental results can be found in many studies. Thus, a method of the optical correction for visualization of an axisymmetric droplet was developed in this study. The correction method was derived to extract refracted vectors. In order to obtain the refracted vectors, a projection vector and a normal vector should be calculated. Then, a distortion distance can be found by the calculated refracted vector and Snell's law. The developed method was also verified by the simulation and the experimental results to apply for a liquid droplet which was formed at a nozzle tip.

A Study on the Viscous Inverse Method for the High Speed Axisymmetric Body Design (고속 축대칭 비행체 설계를 위한 점성 Inverse 기법 연구)

  • Lee Young-Ki;Lee Jaewoo
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • An efficient inverse method for 1.he supersonic/hypersonic axisymmetric body design is developed for the parabolized Navier-Stokes equations. The developed method is examined numerically for three extreme testcases in the supersonic(M/sub ∞/=3.0) and hypersonic(M/sub ∞/=6.28) speeds. The first one is a negative pressure distribution near a vacuum pressure and the second one is a positive pressure distribution over the whole region of the body. The last one is the case of abrupt change of pressure distribution to zero in the forward region of the body. These testcases show the robustness of the method. By introducing a regular-falsi method and by using a not-fully converged inverse solution, the convergence behavior was greatly improved.

  • PDF

A study on the hexagonal drawing dies for the high strength materials (고강도 육각 이형 인발 다이스에 관한 연구)

  • 권혁홍;유동진;이정로;이원복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1410-1413
    • /
    • 2003
  • Drawing is a basic plastic deformation method and productive manufacturing process make wire. rod and variety section geometry bar. Study for the rod drawing process of rod was researched long littles. but non-axisymmetric drawing process is weak. So metal flow is very irregular in non-axisymmetric drawing process and difficult to define about material deformation generally. In this paper, to solve material deformation, use finite element method and then define suitable shape for rod to hexagonal drawing dies. And research corner filling rate and surface roughness for the high strength steel hexagonal bar produced defined dies.

  • PDF

Ductile Fracture in Axisymmetric Extrusion Process (축대칭 전방 압출 공정에서의 연성파괴)

  • 최석우;이용신;오흥국
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.29-37
    • /
    • 1996
  • A ductile fracture criterion, which has already proposed, namely, ($\Delta$1/1o)f at $\Delta$$\sigma$ m=(($\Delta$1/1o)f+(-1/tan$\theta$)$\Delta$$\sigma$m(where ($\Delta$1/1o)f is fracture elongation, $\Delta$$\sigma$m is mean stress variation) was made use of to study the working limit in axisymmetric extrusion. The present investigation is concerned with the application of theory on flow and fracture to the prediction of workability of materials in axisymmetric bar extrusion, with special reference to central bursting. The influenced of die geometry and manufacturing conditions on the central bursting are predicted.

  • PDF

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

Analysis of plastic deformation through axisymmetric backward extrusion using upper-bound method (上界解法에 의한 軸對稱 後方押出의 塑性變形 解析)

  • 한철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.330-336
    • /
    • 1989
  • In analyzing the axisymmetric backward extrusion process a new method of analysis using upper-bound theorem is proposed in which the plastic zone and dead metal zone cam be predicted. Experiments are carried out with commercial aluminum. The metal flow on the meridional plane has been visualized experimentally by using the gridded specimens. It is shown that the theoretical results both in extrusion load and deformation pattern are in good agreement with the experimental results and they can be used for effective punch and die design to consider various process parameters in axisymmetric backward extrusion.

COMPARISON OF CFD SIMULATION AND EXPERIMENT OF CAVITATING FLOW PAST AXISYMMETRIC CYLINDER (전산해석과 실험의 비교검증을 통한 원통형 수중운동체 주위의 캐비테이션 유동현상 연구)

  • Park, H.M.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc., Thus, cavitating flow simulation is of practical importance for many engineering systems. In this study, a two-phase flow solver based on the homogeneous mixture model has been developed. The flow characteristics around an axisymmetric cylinder were calculated and then validated by comparing with the experimental results in the cavitation water tunnel at the Korea Ocean Research & Development Institute. The results show that this solver is highly suitable for simulating the cavitating flows. After the code validation, the cavity length with changes of water depth, angle of attack and velocity were obtained.. Cavitation inception was also calculated for various operational conditions.