• Title/Summary/Keyword: Axisymmetric Hydroforming

Search Result 8, Processing Time 0.016 seconds

Hydroforming of a Non-axisymmetric Thin-walled Tubular Component with Variable Cross Sections (가변 단면을 가지는 비대칭 얇은 관 부품의 액압성형 연구)

  • Kang, H.S.;Joo, B.D.;Hwang, T.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.368-374
    • /
    • 2015
  • Hydroforming of a non-axisymmetric thin-walled tubular component with variable cross sections was analyzed. In order to solve the sealing problem which occurred due to the thin and non-axisymmetric shape, the use of a lead patch on the punch, which had been successful in hydroforming of thin tubes, was evaluated. A lead patch was attached to the punch to solve the sealing problem, which was caused by the stress gradient in the non-axisymmetric shape. FEM and experiments were also performed to analyze these sealing problems associated with the punch shape and non-axisymmetric shape. Finally, the lead patch was attached at tube surface where intensive local strain concentration would occur to enhance the hydroformability. These methods were successfully used to fabricate non-axisymmetric thin-walled tubular component with variable cross sections that had previously failed during traditional hydroforming.

Finite Element Simulation of Axisymmetric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • Kim Y. S.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.58-61
    • /
    • 2001
  • An implicit finite element formulation for axisymmetric tube hydroforming is investigated. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and frictionless contact between tube and fluid are considered using the mesh-normal vector computed from finite element mesh of the tube. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and simulation results are compared with experimental measurements. In the axisymmetric tube hydroforming process, an optimal hydraulic curve is pursued by performing the simulation with various internal pressures and axial forces.

  • PDF

Finite Element Simulation of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압 성형 공정의 유한요소 시뮬레이션)

  • 구본영;김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.590-597
    • /
    • 2000
  • A finite element formulation lot the simulation of axisymmetric sheet hydroforming is proposed, and an implicit program is coded. In order to describe normal anisotropy of steel sheet, Hill's non-quadratic yield function (Hill, 1979) is employed. Frictional contacts among sheet surface, rigid tool surface, and flexible hydrostatic pressure are considered using mesh normal vectors based on finite element of the sheet. Applied hydraulic pressure is also considered as a function of forming rate and time and treated as an external loading. The complete set of the governing relations comprising equilibrium and interfacial equations is approximately linearized for Newton-Raphson algorithm. In order to verify the validity of the developed finite element formulation, the axisymmetric bulge test is simulated. Simulation results are compared with other FEM results and experimental measurements and showed good agreements. In axisymmetric hydroforming processes of a disk cover, formability changes are observed according to the hydraulic pressure curve changes.

  • PDF

Finite Element Simulation of Axisymmeric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • 김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

Theoretical and Experimental Study of the Axisymmetric Fluid Pressure-Driven Hydroforming Process (축대칭 벌징형 하이드로포밍 공정에 대한 이론 및 실험적 연구)

  • Yang, Dong-Yol;Choi, Sun-Jun;Chung, Wan-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.28-38
    • /
    • 1990
  • The study is concerned with the theoretical and experimental investigation of axisymmetric fluid pressure-driven hydroforming of sheet metal by forming over the die cavity. The rigid-plastic finite element method is employed to calculate the stress and strain distribution. The effect of blank size and die radius is also studied in the finite element analysis. Experiments are carried out for hydroforming of cold-rolled steel sheets under various process conditions. The computational results are compared with the experimental results for the forming pressure vs. pole displacement relations and strain distributions. Comparison has shown that theoretical predictions by the finite element method are in good agreement with the experiment with the experimental observations. Thus, it is shown that the rigid-plastic finite element method is effectively used in the analysis of axisymmetric fluid pressure-driven hydroforming process.

  • PDF

Rigid-Plastic Finite Element Analysis of Axi-Symmetric Hydroforming with Controlled Pressure (유체압력이 제어되는 축대칭 하이드로포밍에 대한 강소성 유한요소 해석)

  • 양동열;권혁주;정완진;노태성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.571-580
    • /
    • 1990
  • The study is concerned with the analysis of axisymmetric hydroforming with controlled pressure by the rigid-plastic finite element method. The finite element method is employed to obtain the detailed information including the distribution of stresses and strains and geometry changes. Experiments are carried out for hydroforming of cold-rolled steel sheets with the developed CNC hydroforming press which is pressure-controlled according to the fluid pressure vs.-stroke relationship given by the upper bound. Four types of punches are used for the experiments. The computed results are in good agreements with the experimental observation in geometric change and thickness variation. The present analysis permits the prediction of stresses, strains, geometric changes. The effects of Lankford value and workhardening exponent on thickness strains in hydroforming are also discussed. It is thus shown that the present method can be applied to the effective design of axisymmetric hydrooforming processes.

Finite Element Analysis of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압성형 공정의 유한요소 해석)

  • Jeong, Y. H.;Lee, S. H.;Keum, Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.26-29
    • /
    • 1999
  • The sectional forming analysis program for analyzing the hydroforming processes of axisymmetric sheet parts was tleveloped. The rigid-viscoplastic FEM formulation based on membrane theory was derived, wh~cta simi~ltaneously solve force equilibrium as well as non-penetration condition. Hill's non-quadratic normal anisotropic yield theory(1979) was used for material behaviour. For describing the liquid pressure iaction, the flexible tool concept was introduced. Isotropic hardening law was also assumed. To verify the \,alidity of the formulation, the stepped cup forming process as well as the hydrostatic bulging test were \imnlated. Simulation results agreed well with Finckenstein and experimental ones.

  • PDF

축대칭 벌징형 하이드로포밍 공정에대한 이론 및 실험적 연구

  • 양동열;최선준;정완진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1990.04a
    • /
    • pp.83-88
    • /
    • 1990
  • The study is concerned with the theoretical and experimental investigation of axisymmetric fluid pressure-drive hydronforming of sheet metal by forming over the die cavity. The rigid-plastic finite element method is employed to calculate the stress and strain distribution The effect of blank size and die radius is also studied in the finite element analysis. Experiments are carried out for hydroforming of cold rolled steel sheets under various process conditions. The computational results are compared with the experimental results for the forming pressure vs. pole displacement relations and strain distributions. Comparison has shown that theoretical predictions by the finite element method are in good agreement with the experimental observations. Thus, it is shown that the rigid-plastic finite element method is effectively used in the analysis of axisymmetric fluid pressure-driven hydroforming process.