• 제목/요약/키워드: Axial power distribution

검색결과 123건 처리시간 0.029초

平面應力狀態 에서 균열先端 의 小規模降伏 에 관한 有限要素解析 (Finite Element Analysis on the Small Scale Yielding of a Crack Tip in Plane Stress)

  • 임장근;맹주성;김병용
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.270-277
    • /
    • 1983
  • Plastic plane stress solutions are given for a center cracked strip, characterized by the Ramberg-Osgood plastic index, under bi-axial tension. Using a power law hardening stress-strain relation, an incremental plasticity finite element formulation is developed, and simple formulation is given for computing J-integral with nodal displacements. The near tip angular distribution of von Mises effective stress doesn't differ significantly in magnitude according to the change of loading stress and bi-axial load combination factor. But, for smaller plastic index, the location of its maximum value moves vertically at a head of crack. J-integral value, in the plastic zone near crack tip, decreases with load combination factor for large and small plastic index.

New algorithm for simulating heat transfer in a complex CPFS (Cable Penetration Fire Stop)

  • Yun, Jong-Pil;Kwon, Seong-Pil;Cho, Jae-Kyu;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1798-1803
    • /
    • 2003
  • In this work the dynamic heat transfer occurring in a cable penetration fire stop system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealants. The dynamic heat transfer can be described by a partial differential equation (PDE) and its initial and boundary conditions. For the shake of simplicity PDE is divided into two parts; one corresponding to the heat transfer in the axial direction and the other corresponding to the heat transfer on the vertical layers. Two numerical methods, SOR (Sequential Over-Relaxation) and FEM (Finite Element Method), are implemented to solve these equations respectively. The axial line is discretized, and SOR is applied. Similarly, all the layers are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The heat fluxes on the layers are calculated by FEM. It is shown that the penetration cable influences the temperature distribution of the fire stop system very significantly. The simulation results are shown in the three-dimensional graphics for the understanding of the transient temperature distribution in the fire stop system.

  • PDF

마이크로 사이클론 연소기의 화염 안정화 기구 (Flame Stabilization Mechanism of a Micro Cyclone Combustor)

  • 오창보;최병일;한용식;김명배;황철홍
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.139-144
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a component of mobile power generator (MPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately to prevent a flash-back. The flame shape stabilized inside the micro cyclone combustor was visualized experimentally and the flow field and the combustion characteristics of the combustor were investigated numerically. The global equivalence ratio (${\Phi}$), defined using the fuel and air flow rates, was introduced to examine the overall flow and flame features of the combustor. The flame stabilization mechanism could be well understood using the velocity distribution inside the combustor. For only non-reacting case, it was found that a weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$ < 1.0. It was also found that small regions that have a negative axial velocity exist near the fuel injection ports for both of non-reacting and reacting case. It was identify that a flame front was stabilized at the negative axial velocity regions near the fuel injection ports.

  • PDF

승용차용 세라믹 촉매 담체의 열적 내구성의 실험적 평가 (Experimental Estimation of Thermal Durability in Ceramic Catalyst Supports for Passenger Car)

  • 백석흠;김성용;승삼선;양협;주원식;조석수
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1157-1164
    • /
    • 2007
  • Ceramic honeycomb structures have performed successfully as catalyst supports for meeting hydrocarbon, carbon monoxide and nitrous emissions standards for gasoline-powered vehicles. Three-way catalyst converter has to withstand high temperature and thermal stress due to pressure fluctuations and vibrations. Thermal stress constitutes a major portion of the total stress which the ceramic catalyst support experiences in service. In this study, temperature distribution was measured at ceramic catalyst supports. Thermal durability was evaluated by power series dynamic fatigue damage model. Radial temperature gradient was higher than axial temperature gradient. Thermal stresses depended on direction of elastic modulus. Axial stresses are higher than tangential stresses. Tangential and axial stresses remained below thermal fatigue threshold in all engine operation ranges.

Free vibration responses of nonlinear FG-CNT distribution in a polymer matrix

  • Zerrouki, Rachid;Hamidi, Ahmed;Tlidji, Youcef;Karas, Abdelkader;Zidour, Mohamed;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.135-143
    • /
    • 2022
  • The object of this paper is to investigate the free vibration behavior under the effect of carbon nanotube distribution in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) by using higher-order shear deformation theories. In this work, we present a novel distribution method for carbon nanotubes in the polymer matrix by using a new exponential power law distribution of carbon nanotube volume fraction. It is assumed that the SWCNTs are aligned along the beam axial direction and the distribution of the SWCNTs may vary through the thickness of the beam with different patterns of reinforcement. The rule of mixtures is used in order to obtain material properties of the CNTRC beams. Hamilton's principle is used in deriving the equations of motion. The validity of the free Vibration results is examined by comparing them with those of the known data in the literature. The results that obtained indicate that the carbon nanotube volume fraction distribution play a very important role on the free vibrations characteristics of the CNTRC beam.

실험 및 CFD에 의한 가이드베인 개도에 따른 소형 튜블러 수차의 성능특성 (Performance Characteristics of Small Tubular-type Hydroturbine according to the Guide Vane Opening Angle by Experiment and CFD)

  • 남상현;김유택;최영도;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권5호
    • /
    • pp.44-49
    • /
    • 2008
  • As the alternative energy, renewable energy should have been developing by many techniques, in order to substitute the fossil fuel which will be disappeared in the near future. One of the small hydropower generator, main concept of tubular turbine is based on using the different water pressure levels in pipe lines, energy which was initially wasted by using a reducing valve at the end of the pipeline, is collected by turbine in the hydro power generator. A propeller shaped hydro turbine has been used in order to use this renewable pressure energy in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the guide vane opening angle are examined in detail. First, it ensures the reliance of CFD by that of compared with experiment data. After all, the results of performance characteristics of the CFD and experiment show to confirm the data that power, head and efficiency of less than 4%, 2% and 5% respectively. Moreover influences of pressure, tangential and axial velocity distributions on turbine performance are investigated.

Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC

  • Wang, Zhenyu;Liu, Shichang;She, Ding;Su, Yang;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.430-438
    • /
    • 2021
  • The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.

EVALUATION OF THE UNCERTAINTIES IN THE MODELING AND SOURCE DISTRIBUTION FOR PRESSURE VESSEL NEUTRON FLUENCE CALCULATIONS

  • Kim, Yong-Il;Hwang, Hae-Ryong
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.237-241
    • /
    • 2001
  • The uncertainties associated with fluence calculation at the pressure vessel have been evaluated for the Korean Next Generation Reactor, APR1400. To obtain uncertainties, sensitivity analyses were performed for each of the parameters important to calculated fast neutron fluence. Among the important parameters to the overall uncertainties, reactor modeling and core neutron source were examined. Mechanical tolerances, composition and density variations in the reactor materials as well as application of $r-{\theta}$ geometry in rectilinear region contribute to uncertainty in the reactor modeling. Depletion and buildup of fissile nuclides, instrument error related to core power level, uncertainty of fuel pin burnup, and variation of long-term axial peaking factors are main contributors to the core neutron source uncertainty. The sensitivity analyses have shown that the uncertainty in the fluence calculation at the reactor pressure vessel is +12%.

  • PDF

유도 브릴루앙 산란에 의한 펄스 압축 과정에서의 Peak Power 반사율과 위상공액도 (Peak Power Reflectivity and Phase Conjugation Fidelity in a Pulse Compression Process by Stimulated Brillouin Scattering)

  • 조민식;최병일;남창희
    • 한국광학회지
    • /
    • 제5권1호
    • /
    • pp.37-44
    • /
    • 1994
  • 유도 브릴루앙 반사광을 고출력 레이저에 응용할 때 요구되는 반사광 특성이 실험적으로 조사되었다. 집속 렌즈의 초점거리에 따른 유도 브릴루앙 반사광의 peak power 반사율과 위상공액도가 측정되었다. 또한 반사광 가운데 펄스압축된 부분만의 위상공액도가 측정되었다. 초점거리가 긴 경우(f=100cm) 반사광의 peak power가 입사광의 약 2배에 이르렀다. 이때 반사광 중에서 압축된 선두펄스만의 위상공액도는 약 90%로 다른 시간의 펄스보다 위상공액도가 우수했다. 공간적으로는 유도 브릴루앙 이득이 가장 큰 광축부분의 바사관이 최대의 펄스압축, peak power 반사율, 위상공액도를 보여서 유도 브릴루앙 산란을 응용할 때 가장 유용한 부분으로 확인되었다.

  • PDF

전기전도성 이방성 복합재료 방전가공의 수치 해석 (Numerical Analysis of the Electro-discharge Machining Process of a Conductive Anisotropic Composite)

  • 안영철;천갑제
    • Korean Chemical Engineering Research
    • /
    • 제47권1호
    • /
    • pp.72-78
    • /
    • 2009
  • 전기전도성 이방성 복합재료의 방전가공에 대하여 비정상상태 수식모델을 세우고 갤러킨의 유한요소법으로 해를 구하였다. 피삭재의 온도 분포와 분화구의 모양 및 공작물 제거 속도를 공정 매개변수에 관하여 구득하였다. 계산의 정확도와 효율을 위하여 앞선 연구에서 최적치로 선정된 $12{\times}12$ 요소의 비규칙 체눈을 사용하였다. 알루미나/티타늄 카바이드 복합재료의 물성을 재료의 물성으로 선정하였고 51.4 V의 전압과 7 A의 전류를 갖는 전력을 적용하였으며 제거 효율을 10%로 전열 이방성 계수를 2와 3으로 가정하였다. 불꽃이 일어나면서 피삭재는 즉시 녹기 시작하였고 열적 손상 영역이 형성되었다. 또한 시간이 흘러감에 따라서 분화구의 경계가 이동하는 것이 확인되었다. 반경 방향과 축 방향의 열전도도가 독립적으로 커지면 온도분포와 분화구의 모양이 각각 반경 방향과 축 방향으로 이동하였다. 공작물 제거 속도는 축 방향의 열전도도보다 반경 방향의 열전도도가 증가할 때 더욱 커지는 것으로 나타났다.