Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.2.135

Free vibration responses of nonlinear FG-CNT distribution in a polymer matrix  

Zerrouki, Rachid (Laboratory of Geomatics and Sustainable Development, University of Tiaret)
Hamidi, Ahmed (Civil Engineering and Hydraulic Department, Faculty Technology, University of Bechar)
Tlidji, Youcef (University of Tiaret)
Karas, Abdelkader (Fac. Applied Sciences, Synthesis and Catalysis Laboratory LSCT, University of Tiaret)
Zidour, Mohamed (University of Tiaret)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Smart Structures and Systems / v.30, no.2, 2022 , pp. 135-143 More about this Journal
Abstract
The object of this paper is to investigate the free vibration behavior under the effect of carbon nanotube distribution in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) by using higher-order shear deformation theories. In this work, we present a novel distribution method for carbon nanotubes in the polymer matrix by using a new exponential power law distribution of carbon nanotube volume fraction. It is assumed that the SWCNTs are aligned along the beam axial direction and the distribution of the SWCNTs may vary through the thickness of the beam with different patterns of reinforcement. The rule of mixtures is used in order to obtain material properties of the CNTRC beams. Hamilton's principle is used in deriving the equations of motion. The validity of the free Vibration results is examined by comparing them with those of the known data in the literature. The results that obtained indicate that the carbon nanotube volume fraction distribution play a very important role on the free vibrations characteristics of the CNTRC beam.
Keywords
beam; free vibration; nanotube; nonlinear distribution; shear deformation; volume fraction;
Citations & Related Records
Times Cited By KSCI : 21  (Citation Analysis)
연도 인용수 순위
1 Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., Int. J., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141   DOI
2 Arani, A.G., Pourjamshidian, M. and Arefi, M. (2018), "Nonlinear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory", Smart Struct. Syst., Int. J., 22(1), 105-120. https://doi.org/10.12989/sss.2018.22.1.105   DOI
3 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603   DOI
4 Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., Int. J., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213   DOI
5 Avcar, M. and Alwan, H.H.A. (2017), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9(2), 127-137. https://doi.org/10.24107/ijeas.322884   DOI
6 Ebrahimi, F. and Daman, M. (2017), "Nonlocal thermo-electromechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam", Smart Struct. Syst., Int. J., 20(3), 351-368. http://doi.org/10.12989/sss.2017.20.3.351   DOI
7 Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Mathe. Modell., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008   DOI
8 Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006   DOI
9 Reissner, E. (1945), "The effect of transverse shears deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
10 Rostami, R., Rahaghi, M.I. and Mohammadimehr, M. (2020), "Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets", Smart Struct. Syst., Int. J., 26(2), 185-193. http://doi.org/10.12989/sss.2020.26.2.185   DOI
11 Shahrbabaki, E.A. and Alibeigloo, A. (2014), "Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method", Compos. Struct., 111, 362-370. https://doi.org/10.1016/j.compstruct.2014.01.013   DOI
12 Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., Int. J., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309   DOI
13 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026   DOI
14 Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259   DOI
15 Wali, M., Hentati, T., Jarraya, A. and Dammak, F. (2015), "Free vibration analysis of FGM shell structures with a discrete double directors shell element", Compos. Struct., 125, 295-303. https://doi.org/10.1016/J.COMPSTRUCT.2015.02.032   DOI
16 Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling, and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Computat. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028   DOI
17 Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012   DOI
18 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135   DOI
19 Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., Int. J., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269   DOI
20 Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., Int. J., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517   DOI
21 Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001   DOI
22 Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda-Bedia, E.A. (2015), "Postbuckling analysis of functionally graded beams using hyperbolic shear deformation theory", Rev. Inform. Eng. Applicat., 2(1), 1-14. https://doi.org/10.18488/journal.79/2015.2.1/79.1.1.14   DOI
23 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., Int. J., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209   DOI
24 Dresselhaus, M.S. and Avouris, P. (2001), "Introduction to carbon materials research", In: Carbon Nanotubes, pp. 1-9, Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39947-X   DOI
25 Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: a micromechanical approach", Iran. J. Sci. Technol., Transact. Mech. Eng., 43(1), 61-73. https://doi.org/10.1007/s40997-017-0140-y   DOI
26 Alankaya, V. and Erdonmez, C. (2017), "Bending performance of laminated sandwich shells in hyperbolic paraboloidal form", Steel Compos. Struct., Int. J., 25(3), 337-346. https://doi.org/10.12989/scs.2017.25.3.337   DOI
27 Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036   DOI
28 Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C. (2001), "Logic circuits with carbon nanotube transistors", Science, 294(5545), 1317-1320. https://doi.org/10.1126/science.1065824   DOI
29 Fariborz, J. and Batra, R.C. (2019), "Free vibration of bidirectional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036   DOI
30 Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., Int. J., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555   DOI
31 Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108   DOI
32 Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda-Bedia, E.A. (2014), "Hygrothermal effects on the postbuckling response of composite beams", Am. J. Mater. Res., 1(2), 35-43. https://doi.org/10.12989/scs.2018.27.6.777
33 Zghal, S. and Dammak, F. (2020), "Vibrational behavior of beams made of functionally graded materials by using a mixed formulation", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(18), 3650-36660. https://doi.org/10.1177/0954406220916533   DOI
34 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58.   DOI
35 Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243   DOI
36 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099   DOI
37 Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013   DOI
38 Karami, B., Janghorban, M. and Tounsi, A. (2019), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487   DOI
39 Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9   DOI
40 Kolahchi, R. and Moniri, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Mathe. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8   DOI
41 Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9   DOI
42 Liu, T., Wriggers, P. and Liu, G. (2012) "A molecular dynamics-continuum concurrent multiscale model for quasi-static nanoscale contact problems", Int. J. Multiscale Computat. Eng., 10(4), 307-326. https://doi.org/10.1615/IntJMultCompEng.2012002133   DOI
43 Mehar, K. and Panda, S.K. (2016), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 115, No. 1, p. 012014. https://doi.org/10.1088/1757-899X/115/1/012014   DOI
44 Mellouli, H., Jrad, H., Wali, M. and Dammak, F. (2020), "Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method", Comput. Mathe. Applicat., 79(11), 3160-3178. https://doi.org/10.1016/j.camwa.2020.01.015   DOI
45 Levinson, M.A.R.K. (1981), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4   DOI
46 Mahesh, V. and Harursampath, D. (2020a), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5   DOI
47 Mahesh, V. and Harursampath, D. (2020b), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 29(7), 1047-1071. https://doi.org/10.1080/15376494.2020.1805059   DOI
48 Mehar, K. and Panda, S.K. (2018), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 338, No. 1, p. 012017. https://doi.org/10.1088/1757-899X/338/1/012017   DOI
49 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181   DOI
50 Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Mathe. Modell., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021   DOI
51 Zghal, S., Ataoui, D. and Dammak, F. (2021), "Free vibration analysis of porous beams with gradually varying mechanical properties", Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902211047746. https://doi.org/10.1177/14750902211047746   DOI
52 Zghal, S., Ataoui, D. and Dammak, F. (2022), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Mach., 50(3), 1012-1029. https://doi.org/10.1080/15397734.2020.1748053   DOI
53 Zhao, J., Choe, K., Shuai, C., Wang, A. and Wang, Q. (2019), "Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions", Compos. Part B: Eng., 160, 225-240. https://doi.org/10.1016/j.compositesb.2018.09.105   DOI
54 Baltacioglu, A.K. and Civalek, O. (2018), "Numerical approaches for vibration response of annular and circular composite plates", Steel Compos. Struct., Int. J., 29(6), 755-766. https://doi.org/10.12989/scs.2018.29.6.759   DOI
55 Ahmed, H., Mohamed, Z. and Mohamed, S. (2018), "A refined shear deformation plate theory for static and free vibration analysis of functionally graded plates", Ejovoc (Electronic Journal of Vocational Colleges), 8(2), 142-144. Retrieved from: https://dergipark.org.tr/en/pub/ejovoc/issue/41199/497946
56 Ajayan, P.M., Stephan, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Science, 265(5176), 1212-1214. https://doi.org/10.1126/science.265.5176.1212   DOI