• Title/Summary/Keyword: Axial force of rail

Search Result 41, Processing Time 0.022 seconds

Parametric analysis on Deformation of Sharp Curved Ballasted Track (급곡선 자갈궤도의 궤도변형에 관한 매개변수 해석)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Son, Gab-Soo;Kim, Sang-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.28-33
    • /
    • 2017
  • A sharp curved ballasted track on earthwork that was connected with a direct fixation slab track on steel box railway bridges have been deformed and damaged despite the frequently maintenance by a restoring force of sharp curved rail and track-bridge interaction forces such as axial forces and longitudinal displacement of continuous welded rail(CWR) owing to their structural characteristics, calling for alternatives to improve the structural safety and track irregularity. In this study, the authors aim to prove a cause of deformation for the sharp curved ballasted tracks to enhance the structural safety and track irregularity of ballasted track in service. A track-bridge interaction analysis and a finite-element method analysis for the sharp curved ballasted track were performed to consider the axial force and longitudinal displacement of CWR, the temperature and the effect of restoring force of sharp curved rail. From the results, the deformation of the sharp curved ballasted track with adjusted sleeper spacing from 833mm to 590mm were significantly reduced.

Nonlinear earthquake response analysis of CWR on bridge considering soil-structure interaction. (지반-구조물 상호작용을 고려한 교량상 장대레일의 비선형 지진응답해석)

  • Shin Ran Cheol;Cho Sun Kyu;Yang Shin Chu;Choi Jun Seong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.733-738
    • /
    • 2004
  • Recently continuous welded rail is generally used to ensure running performances and to overcome the problems such as structural vulnerability and fastener damage at the rail expansion joint. Though the use of continuous welded rail on bridge has the advantage of decreasing the vibration and damage of rail, it still the risk of buckling and breaking of rail due to change of temperature, starting and/or breaking force, axial stress concentration and so on. So, VIC code and many methods has been developed by researchers considering rail-bridge interaction. Although there are many research concerning stability of continuous welded rail about temperature change on bridge and starting and/or breaking force, the study of continuous welded mil for earthquake load is still unsufficient. In this study, the nonlinear seismic response analysis of continuous welded rail on bridge considering soil-structure interaction, geotechnical characteristic of foundation and earthquake isolation equipment has been performed to examine the stability of continuous welded rail.

  • PDF

A Study of Interaction between Viaduct and Turnout (교량과 분기기 상호작용에 관한 연구)

  • Yang, Shin-Choo;Han, Sang-Chul;Kim, In-Jae
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.689-694
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of running safety and ride comfort of train, reduction of track maintenance working Track-Bridge interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force of rail and a rail expansion and contraction when turnout exist in succession on a CWR of bridge is developed.

Analysis of the axial force in CWR connected with turnout by means of the field measurement (현장계측을 통한 교량상 분기기 축력 분석에 관한 연구)

  • Choi, Jin-Yu;Kim, In-Jae;Hwang, Sung-Ho;Yang, Shin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1289-1292
    • /
    • 2006
  • The demand on a turnout layed on a bridge is rising owing to the increasing number of stations on the viaduct. And also the demand on a turnout with CWR is rising to upgrade running speed of the passing train. A CWR connected with turnout is subjected to additional axial force induced by the actions due to change in temperature, braking and starting force, and bending of the deck. But magnitude and distribution of the axial force in rails of turnout is not clear yet. So, in this study, a field measurement was conducted to know them. The strain gage method was adopted for field test. The FBG sensor for the strain measurement was used to ensure stability of test value and durability of gage for long term. It is expected that we can get data on the axial force in rail connected with turnout with respect to seasonal temperature change by the established field test system.

  • PDF

The Parameter Analysis effecting on the Fatigue Life of Rail on High Speed Railway (고속철도 레일의 피로수명에 영향을 미치는 매개변수분석)

  • Sung, Deok-Yong;Chun, Hee-Kwang;Park, Yong-Gul;Yang, Shin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.874-882
    • /
    • 2008
  • In a domestic, HSR-350x which has the maximum speed 350km/h was developed and then next, the next generation high speed train which has the maximum speed 400km/h has still been developing. With developing the next generation high speed railway, there need to be a general plan to make sure of dynamic safety though the a study on the crack and failure of rail by rolling contact fatigue. Therefore, this study investigated occurring stress of rail according to the track quality, train velocity, wheel radius, track stiffness, distance between sleepers, axial force using Eisenmann's equations. For the more, via the finite element method, it investigated shear force on the rail head which could be changed by the early crack length, angle and temperature. As a result, this study confirmed the main elements which effect on the fatigue life cycle of rail.

  • PDF

The characteristics of the behaviour of plate girder bridges according to the boundary conditions. (경계조건에 따른 판형교 장대레일의 거동 특성)

  • Min Kyung-Ju;Jung Ue Ha;Kim Young-Kook
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.356-363
    • /
    • 2003
  • The CWR of the plate girder bridges in non-ballast causes the additional axial force on the rail and the bearing due to the temperature axial force and the interaction between the CWR and bridges. This study shows the remarkable improvement of reducing the axial force of the CWR on the non-ballast bridge, compared to conventional methods. New method, which is differently designed in terms of longitudinal semi-rigid bearing, reduces the axial force on the bearing by making the girder act both directions. This method is applicable to most cases of bridges regardless of the restriction of length, and useful to reduce the abrasion and damage of the track material.

  • PDF

A study on the axial force on the CWR of the suport rotation (열차하중에 따른 교량 신축부 장대레인 축력 연구)

  • Park, Jun-O;Kim, Jong-Min;Kim, Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.460-469
    • /
    • 2006
  • It is widely known that the temperature variation introduces the axial force along a CWR(Continuous Welded Rail) in the railway bridges. Additional axial forces are generated due to many other reasons. These includes the interaction between the bridge girder and the CWR; acceleration or deceleration of the vehicles; support rotation (or deflection) of the girder. Among aforementioned reasons, this study investigates the influence of the support rotation on additional axial forces throughout the numerical study and the field test. Several strains gauges are installed along the CWR and the strains are measured under passing trains. It is expected that the elaborated estimation of the axial force on CWR will be beneficial for future railway maintenance.

  • PDF

Parameter Study for Long-Span Bridge of High-Speed Railway considering CWR Axial Force (장대레일 축력을 고려한 고속철도 특수교량의 변수별 분석)

  • Lee, Jong-Soon;Cho, Soo-Ik;Park, Man-Ho;Joo, Hwan-Joong;Nam, Hyoung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1452-1459
    • /
    • 2010
  • Application of long-span bridge, which is affected by parameters such as span length, shoe boundary condition, track property and stiffness of superstructure and substructure etc., can vary. Especially, by CWR aspects of the axial force, that can be less constraints of construction depending on whether the application of rail expansion joint(REJ), which has disadvantaged in terms of maintenance. In this study, it was performed parameter study for multiple variables (shaft length, the upper and lower cross-section characteristics, track characteristics, etc.) in terms of CWR aspects. Structure-rail interaction analysis was applied to the typical simple span PSC Box and 3 span continuous bridge Extradosed Bridge(50m+80m+50m) excluding REJ. If you set the boundary e of variables for long-span railway bridge excluding REJ through the this study, when designing future is expected to be able to useful.

  • PDF

Type Suggestion and Parameter Study for Long-Span Bridge of High-Speed Railway without the REJ considering CWR Axial Force (장대레일 축력을 고려한 REJ 미적용 고속철도 특수교량 형식 제시 및 변수별 분석)

  • Lee, Jong-Soon;Joo, Hwan-Joong;Shin, Jai-Yeoul;Yoon, Sung-Sun;Park, Sun-Hee;Nam, Hyoung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1254-1261
    • /
    • 2011
  • Application of long-span bridge, which is affected by parameters such as span length, shoe boundary condition, track property and stiffness of superstructure and substructure etc., can vary. Especially, by CWR aspects of the axial force, long-span high speed railway bridges are limited at type and span length. In this study, in terms of CWR axial force, the long-span high-speed railway bridges without REJ(Rail Expansion Joint) is to propose the bridge type. Various Parameters analysis performed for the proposed type(Arch bridge, Cable-stayed bridge).

  • PDF

A Study on the axial force in CWR with Turnout according to Distance between Bridge Expansion Joint and Turnout (교량신축과 분기기의 이격거리에 따른 교량상 분기기 축력특성 연구)

  • Choi, Jin-Yu;Lee, Hyun-Jeong;Yang, Shin-Chu;Jeong, Jang-Yong;Yu, Jin-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1050-1055
    • /
    • 2008
  • The demand on a turnout layed on a bridge is rising owing to the increasing number of stations on the viaduct. And also the demand on a turnout with CWR is rising to upgrade running speed of the passing train. A CWR with turnout is subjected to additional axial force induced by the thermal expansion of bridge as well as lead rail of turnout. The additional axial force is closely related with the distance between bridge expansion joint and turnout when it is located near the movable bearing of bridge, and it is required to keep some distance to prevent excessive axial stress in CWR. But, there is no guideline in specification for the proper distance from E.J. to turnout, and it caused problem in planning turnout or bridge. So, it this study, the parametric study to investigate the effect on axial stress in CWR with turnout according to span length and distance between bridge expansion joint and turnout was performed. From the results of numerical analysis, it was found out that $5{\sim}30m$ distance is required to prevent excessive axial in CWR for span length less 90m.

  • PDF