• 제목/요약/키워드: Axial buckling strength

검색결과 184건 처리시간 0.023초

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.

Experimental and numerical study of an innovative 4-channels cold-formed steel built-up column under axial compression

  • G, Beulah Gnana Ananthi;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.513-538
    • /
    • 2022
  • This paper reports on experiments addressing the buckling and collapse behavior of an innovative built-up cold-formed steel (CFS) columns. The built-up column consists of four individual CFS lipped channels, two of them placed back-to-back at the web using two self-drilling screw fasteners at specified spacing along the column length, while the other two channels were connected flange-to-flange using one self-drilling screw fastener at specified spacing along the column length. In total, 12 experimental tests are reported, covering a wide range of column lengths from stub to slender columns. The initial geometric imperfections and material properties were determined for all test specimens. The effect of screw spacing, load-versus axial shortening behaviour and buckling modes for different lengths and screw spacing were investigated. Nonlinear finite element (FE) models were also developed, which included material nonlinearities and initial geometric imperfections. The FE models were validated against the experimental results, both in terms of axial capacity and failure modes of built-up CFS columns. Furthermore, using the validated FE models, a parametric study was conducted which comprises 324 models to investigate the effect of screw fastener spacing, thicknesses and wide range of lengths on axial capacity of back-to-back and flange-to-flange built-up CFS channel sections. Using both the experimental and FE results, it is shown that design in accordance with the American Iron and Steel Institute (AISI) and Australia/New Zealand (AS/NZS) standards is slightly conservative by 6% on average, while determining the axial capacity of back-to-back and flange-to-flange built-up CFS channel sections.

Influence of spacers on ultimate strength of intermediate length thin walled columns

  • Anbarasu, M.;Sukumar, S.
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.437-454
    • /
    • 2014
  • The influence of spacers on the behaviour and ultimate capacity of intermediate length CFS open section columns under axial compression is investigated in this paper. The focus of the research lies in the cross- section predominantly, failed by distortional buckling. This paper made an attempt to either delay or eliminate the distortional buckling mode by the introduction of transverse elements referred herein as spacers. The cross-sections investigated have been selected by performing the elastic buckling analysis using CUFSM software. The test program considered three different columns having slenderness ratios of 35, 50 & 60. The test program consisted of 14 pure axial compression tests under hinged-hinged end condition. Models have been analysed using finite element simulations and the obtained results are compared with the experimental tests. The finite element package ABAQUS has been used to carry out non-linear analyses of the columns. The finite element model incorporates material, geometric non-linearities and initial geometric imperfection of the specimens. The work involves a wide parametric study in the column with spacers of varying depth and number of spacers. The results obtained from the study shows that the depth and number of spacers have significant influence on the behaviour and strength of the columns. Based on the nonlinear regression analysis the design equation is proposed for the selected section.

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

Finite element modelling of back-to-back built-up cold-formed stainless-steel lipped channels under axial compression

  • Roy, Krishanu;Lau, Hieng Ho;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.37-66
    • /
    • 2019
  • In cold-formed steel structures, such as trusses, wall frames and portal frames, the use of back-to-back built-up cold-formed stainless-steel lipped channels as compression members are becoming increasingly popular. The advantages of using stainless-steel as structural members are corrosion resistance and durability, compared with carbon steel. The AISI/ASCE Standard, SEI/ASCE-8-02 and AS/NZS do not include the design of stainless-steel built-up channels and very few experimental tests or finite element analyses have been reported in the literature for such back-to back cold-formed stainless-steel channels. Current guidance by the American Iron and Steel Institute (AISI) and the Australian and New Zealand (gAS/NZS) standards for built-up carbon steel sections only describe a modified slenderness approach, to consider the spacing of the intermediate fasteners. Thus, this paper presents a numerical investigation on the behavior of back-to-back cold-formed stainless-steel built-up lipped channels. Three different grades of stainless steel i.e., duplex EN1.4462, ferritic EN1.4003 and austenitic EN1.4404 have been considered. Effect of screw spacing on the axial strength of such built-up channels was investigated. As expected, most of the short and intermediate columns failed by either local-global or local-distortional buckling interactions, whereas the long columns, failed by global buckling. All three grades of stainless-steel stub columns failed by local buckling. A comprehensive parametric study was then carried out covering a wide range of slenderness and different cross-sectional geometries to assess the performance of the current design guidelines by AISI and AS/NZS. In total, 647 finite element models were analyzed. From the results of the parametric study, it was found that the AISI & AS/NZS are conservative by around 10 to 20% for cold-formed stainless-steel built-up lipped channels failed through overall buckling, irrespective of the stainless-steel grades. However, the AISI and AS/NZS can be un-conservative by around 6% for all three grades of stainless-steel built-up channels, which failed by local buckling.

세장 단면의 고강도 강관을 적용한 각형 CFT 기둥의 압축실험 (Axial Load Test on Rectangular CFT Columns using High-Strength Steel and Slender Section)

  • 이호준;박홍근;최인락
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.219-229
    • /
    • 2015
  • 각형 CFT 기둥에 대한 실험 연구를 수행하였다. 본 연구는 세장 단면의 고강도 강관을 적용한 CFT 기둥의 압축성능 평가하는 것이 주요 목적이다. 실험 변수는 강관의 판폭두께비, 콘크리트 강도, 강관 항복강도, 그리고 스티프너의 사용여부이다. 총 5개의 기둥 실험체에 대하여 중심압축 실험을 수행하였다. 고강도 강관을 적용한 실험체는 탄성국부좌굴이 발생하였지만, 높은 항복강도로 인하여 상당한 후좌굴강도를 발휘하였다. 또한, 실험결과는 현행 설계기준에 의한 예상강도를 대체로 만족하였다. 세장 단면의 고강도 강관에 스티프너를 보강할 경우 강도와 변형능력 면에서 우수한 구조성능을 발휘하였다.

단부구속효과를 고려한 관통 가셋트 부착 강관부재의 좌굴내력 및 유효세장비 산정에 관한 연구 (A Study on the Buckling Strength and Effective Length of Tubular Member with Gusset Plate Considering End Restraints)

  • 김우범
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.159-165
    • /
    • 2003
  • 단부에 관통 가셋트판이 부착된 강관부재의 좌굴거동은 단부의 형상 및 상태에 따라 구속정도가 상이하게되며 단부요소는 세 장비에 따라 탄성 및 비탄성 거동 특성을 보임에 따라 이론적 좌굴내력을 도출하는 것은 사실상 불가능하다. 본 연구에서는 탄성좌굴의 이론적 접근을 바탕으로 세장비($\lambda$), 강성비($\beta$), 지지길이비(G), 강관크기, 부재의 초기변형 등을 고려하여 비탄성 유한요소 해석을 수행하여 각각의 영향요소가 좌굴하중에 미치는 영향을 살펴보았다. 또한 유한요소 모델링시 세장비($\lambda$), 강성비($\beta$), 지지길이비(G), 강관크기 등의 매개변수 분석을 통하여 강도식을 도출하였다.

A design approach of integral-abutment steel girder bridges for maintenance

  • Kim, WooSeok;Jeong, Yoseok;Lee, Jaeha
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.227-239
    • /
    • 2018
  • Integral abutment bridges (IABs) have no joint across the length of bridge and are therefore also known as jointless bridges. IABs have many advantages, such as structural integrity, efficiency, and stability. More importantly, IABs have proven to be have both low maintenance and construction costs. However, due to the restraints at both ends of the girder due to the absence of a gap (joint), special design considerations are required. For example, while replacing the deck slabs to extend the service life of the IAB, the buckling strength of the steel girder without a deck slab could be much smaller than the case with deck slab in place. With no deck slab, the addition of thermal expansion in the steel girders generates passive earth pressure from the abutment and if the applied axial force is greater than the buckling strength of the steel girders, buckling failure can occur. In this study, numerical simulations were performed to estimate the buckling strength of typical steel girders in IABs. The effects of girder length, the width of flange and thickness of flange, imperfection due to fabrication and construction errors on the buckling strengths of multiple and single girders in IABs are studied. The effect of girder spacing, span length ratio (for a three span girder) and self-weight effects on the buckling strength are also studied. For estimation of the reaction force of the abutment generated by the passive earth pressure of the soil, BA 42/96 (2003), PennDOT DM4 (2015) and the LTI proposed equations (2009) were used and the results obtained are compared with the buckling strength of the steel girders. Using the selected design equations and the results obtained from the numerical analysis, equations for preventing the buckling failure of steel girders during deck replacement for maintenance are presented.

보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제3보)(第3報) -압축(壓縮) 및 전단좌굴(剪斷挫屈) (The Buckling Analysis of Stiffened Plate with Hole(3rd Report) -compression and shear buckling-)

  • 장창두;나승수
    • 대한조선학회지
    • /
    • 제22권1호
    • /
    • pp.9-20
    • /
    • 1985
  • Generally the stiffened plate in the ship structure is subjected to not only axial load but shear load. With respect to those combined loads buckling analysis in necessary. In this paper, buckling strength is analyzed by using Finite Element Method when the stiffened plate with hole is under loading conditions mentioned above. To obtain the higher buckling strength, we need some reinforcement. The methods of reinforcement are attaching doubler around hole and stiffeners in the arbitrary directions For the sake of convenience those arbitrary directions were selected paralleled($0^{\circ}C$), vertical($90^{\circ}C$)and oblique($45^{\circ}C$) to the edge. Two kinds of method mentioned above are investigated, it is clarified that which of the two is more effective reinforcement. From the viewpoint of buckling strength, following conclusions were obtained. When external load direction is unknown, doubler reinforcement is more effective than those of parallel and vertical stiffener. And oblique stiffener reinforcement is more effective than that of doubler when external load direction is know.

  • PDF

내진철골모멘트접합부 패널존의 전단좌굴 방지를 위한 패널존 상대강도 (Relative Panel Zone Strength in Seismic Steel Moment Connections for Prevention of Panel Zone Shear Buckling)

  • 김소연;이철호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.845-850
    • /
    • 2007
  • The empirical AISC panel zone thickness provision$(t_z\geq(d_z+w_z)$/90) to prevent the cyclic shear buckling of the panel zone was proposed based on the test data of Krawinkler et al. (1971) and Bertero et al. (1973) However, no published records of the equation development or any other background information appear to be available. The calibrated finite element analysis results of this study indicated that the AISC provision was not reasonable. In this study, through including the effects of the column axial force and the aspect ratio of the panel zone, a new equation for the relative strength between the beam and the panel zone was proposed such that the proposed equation can prevent the panel zone shear buckling and reduce the potential fracture associated with the kinking of the column flanges.

  • PDF