• Title/Summary/Keyword: Avionics System Architecture

Search Result 27, Processing Time 0.018 seconds

A Study on the Trend of an Avionics System Architecture Development for UAV (무인기 항공전자 체계의 아키텍처 개발 동향연구)

  • Kim, Sung Woo;Sim, Jae Ick;Lee, Wang Gug;Lee, Woo Jin;Won, Dae Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.436-447
    • /
    • 2014
  • The major elements of avionics system architecture are requirements, Real Time Operating System, message communication, memory, and data format etc. Herein describes a state-of-the-art development trend for the avionics system architecture, system requirements and data bus among the major elements of avionics system. While, domestic technology has been tried to Integrated Modular Avionics(IMA) system based on the Avionics Full Duplex Switched Ethernet(AFDX) technology during Light Attack Helicopter(LAH) project in Korea, but not yet proved as the product case in Full Scale Development Phase. The avionics system architecture considering the domestic inexperience of the IMA system architecture are suggested for the Next-generation Corps Unmanned Aircraft System.

Concept Study of Mission Equipment Package Architecture for Korean Attack Helicopter (한국형 공격헬기 임무탑재장비 구조도 개념 연구)

  • Kim, Sung-Woo;Kim, Myung-Chin;Oh, Woo-Seop;Lee, Jong-Hoon;Yim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.598-606
    • /
    • 2011
  • The importance of avionics systems has increased to a significant level in modern aircraft development. Modern avionics system is a complex integrated system of state-of-art hardware and software technology. Specifying the avionics system architecture is the most important task throughout the avionics system design process. This paper reviews modern avionics system architectures and proposes an effective avionics architecture suitable for modern attack helicopters.

A Study on the Development of an Avionics System (항공전자 시스템 개발에 관한 연구)

  • Yang, Sung-Wook;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2007
  • The importance and cost of avionics system in the integration of an aircraft is continuously increasing. And we can expect enlarged software portion in the system integration for the more intelligent, reliable, and automated avionics system. Both military and commercial avionics community have moved toward commercial-off-the-shelf(COTS) equipment and open systems architecture not only to increase affordability but also to reduce acquisition cost, shorten development time and risk. The same concept is applied in developing avionics test system used for the avionics system integration test. In this paper, we present important topics in the development of avionics system including real-time operating system, interconnect data bus, software development methodology, software development process, and system integration test.

  • PDF

A Study on the Architecture for Avionics System of Jet Fighters (제트 전투기의 항공전자 시스템 아키텍처에 관한 연구)

  • Gook, Kwon Byeong;Won, Son Il
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-96
    • /
    • 2022
  • The development trend of jet fighter's avionics system architecture is the digitization of subsystem component functions, increased RF sensor sharing, fiber optic channel networks, and modularized integrated structures. The avionics system architecture of the fifth generation jet fighters (F-22, F-35) has evolved into an integrated modular avionics system based on computing function integration and RF integrated sensor systems. The integrated modular avionics system of jet fighters should provide improved combat power, fault tolerance, and ease of jet fighter control. To this aim, this paper presents the direction and requirements of the next-generation jet fighter's avionics system architecture through analysis of the fifth generation jet fighter's avionics system architecture. The core challenge of the integrated modularized avionic system architecture requirements for next-generation fighters is to build a platform that integrates major components and sensors into aircraft. In other words, the architecture of the next-generation fighters is standardization of systems, sensor integration of each subsystem through open interfaces, integration of functional elements, network integration, and integration of pilots and fighters to improve their ability to respond and control.

A Study on the Avionics Software Design for Redundancy (중복안정성 확보를 위한 항공전자 소프트웨어 설계방안 연구)

  • Lim, Sungshin;Jo, Hansang;Kim, Jongmoon;Song, Chaeil
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.21-26
    • /
    • 2014
  • The aircraft manufacturers are constantly driving to reduce manufacturing lead times and cost at the same time as the product complexity increases and technology continues to change. Integrated Modular Avionics (IMA) is a solution that allows the aviation industry to manage their avionics complexity. IMA defines an integrated system architecture that preserves the fault containment and 'separation of concerns' properties of the federated architectures. In software side, the air transport industry has developed ARINC 653 specification as a standardized Real Time Operating System (RTOS) interface definition for IMA. It allows hosting multiple applications of different software levels on the same hardware in the context of IMA architecture. This paper describes a study that provided the avionics software design for separation of fault and backup of core function to reduce workload of pilot with cost efficiency.

Design Method for Integrated Modular Avionics System Architecture (Integrated Modular Avionics 컴퓨터 아키텍처의 설계방안)

  • Park, Han-Joon;Go, Kwang-Chun;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1094-1103
    • /
    • 2014
  • In this paper, we survey the works related to the system architecture of avionics and extract characteristics from the related works. On the basis of the investigation, we propose an integrated modular avionics (IMA) architecture that can be used for current avionic upgrades and future avionic developments based on the IMA Core system. To verify the feasibility of the proposed IMA architecture, we have developed the prototype of the IMA Core system that consists of both the common hardware module and the IMA software. It was verified that the developed prototype with the common hardware module contributes to the improvement of maintainability because it can save the time and expenses for the development and can reduce the number of types of hardware modules when compared with Federated architecture. It was also confirmed that the developed prototype can save not only overall system weight, size, and power consumption but also the number of hardware types because the IMA software can support the integrated processing where the single processing hardware module can process multiple software applications.

Avionics Software Data Modeling Method and Test For FACE Conformance (FACE 적합성을 위한 항공전자 소프트웨어 데이터 모델링 방안 및 검증)

  • Kyeong-Yeon, Cho;Doo-Hwan, Lee;Sang-Cheol, Cha;Jeong-Yeol, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-53
    • /
    • 2022
  • The avionics industry has recently adopted an open architecture to increase software portability and reduce the development schedule and cost associated with changing hardware equipment. This paper presents a data modeling method compliant with FACE, a widely used open avionics architecture. A FACE data model is designed and implemented to output data from VOR/ILS avionics equipment. A FACE Conformance Test Suite (CTS) program is utilised to verify that the data model meets FACE standards. The proposed data modeling method is expected to improve the development schedule and cost associated with modifying communication methods and ICDs (Interface Control Documents).

Development of Message Oriented Middleware for Operational Flight Program in Avionics (항공전자 비행운영프로그램을 위한 메시지 기반 미들웨어 개발)

  • Kim, Jong-Moon;Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.299-305
    • /
    • 2016
  • It is require to design the next generation avionics system while considering applicability under open architecture where standerd communication module is used. In this situation, if the existing schemes cannot guarantee new requirement, new system development is demanded. In this paper, we present design, implementation, and testing procedure for message based middleware to support operational flight program on avionics. System architecture include mission computer (MC) and large area display (LAD) over standard socket communication based on reliable Ethernet. Finally, experimental results demonstrate that the proposed middleware can guarantee real-time with 20msec as well as reliability requirements with no lost packet.

A Study on the Data Bus for the Integration of Avionics Systems (항공전자 시스템 통합을 위한 데이터 버스 연구)

  • Hong, Seung-Beom;Jie, Min-Seok;Kim, Young-In;Hong, Gyo-Young;Cheon, Gi-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.3
    • /
    • pp.70-77
    • /
    • 2009
  • We proposed the method of avionics integrated architecture using high-speed fiber optic bus. Typically, data bus of aircraft consists of electronic and optic data transmission method. Avionics systems are difficult to operate the electronic data transmission method for the high speed data processing, synchronization and interconnection between flight control system and flight management system efficiently. In this paper, it is known to look into the problem of data bus and the advanced trend in avionics systems, and propose the appropriate data bus of the advanced avionics systems.

  • PDF

Development of Avionics Hot Bench for Avionics System Integration Test (항공전자 시스템 통합시험장비 개발)

  • Kim, Jin-Hyuk;Lee, Sang-Chul;Ryu, Kwang-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.507-513
    • /
    • 2008
  • In this paper, we present a development of an Avionics Hot Bench(AHB) used for the verification of operational flight programs and fault analysis using various simulation and stimulation software. We propose an application of the open system architecture to develop the AHB which can be used for the development of a real aircraft avionics system. In the design of the AHB, to reduce the development period and cost we use as many as commercial off-the-shelf hardware and software items. The developed AHB is compared with the existing proven AHB which was used for T-50 avionics system development. Thorough comparison between the test results using the developed AHB and those using the existing AHB is performed and the overall comparison results are very satisfactory.