• Title/Summary/Keyword: Averaging model

Search Result 302, Processing Time 0.027 seconds

Development of Noncontactable Joystick Controller for Low Speed Electric Vehicle (저속 전기자동차 제어용 비접촉식 조이스틱 개발)

  • Pharm, Trung Hieu;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.549-554
    • /
    • 2012
  • Noncontactable joystick for a low speed electric vehicle(LSEV) is developed. The joystick is proposed to replaced the steering wheel in a conventional LSEV. The main advantages of the proposed joystick are a durable and a stable in structure, simple and easy to control through discriminating the driving and braking area. To reduce error and stability in the joystick control, input and output signal of the joystick are manipulated by data averaging and differntiation. With this algorithm, the driving resolution and capability are improved. To verify the proposed algorithm, a simple prototype model which has two electric motors for propulsion and steering are used. Test results show that the prototype joystick control system is applicable to an LSEV dirve.

Elastic Properties of 2-Step Braided Composites (3차원 2-Step Braided 복합재료의 탄성 계수 예측)

  • Byun, Joon-Hyung
    • 연구논문집
    • /
    • s.23
    • /
    • pp.45-56
    • /
    • 1993
  • In order to acquire more comprehensive understanding of textile composites, the processing-microstructure-performance relationships for a variety of material systems, reinforcing schemes and processing technologies should be established. In this paper, emphasis is placed on the integrated analysis of three-dimensional (3-D) 2-step braided composites. The analysis includes the geometric model of unit cells, identification of key process parameters and processing windows due to limiting geometries of yarn jamming, and prediction of elastic constants of the composite. The coordinate transformation and averaging of stiffness and compliance constants are utilized in the prediction of elastic constants. Since there are several types of unit cells in the thickness and width directions of the composites, characterization of mechanical properties is based upon the macro-cell, which occupies the entire cross-section and the unit pitch length of the sample. The performance map demonstrates that a wide range of elastic properties can be achieved by varying the geometric and process parameters.

  • PDF

Efficiency Analysis of a Ladder Multilevel Converter with the Use of the Equivalent Continuous Model

  • Lopez, Andres;Patino, Diego;Diez, Rafael
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1130-1138
    • /
    • 2014
  • This study analyzes a ladder multilevel converter (double ladder topology) with the use of a new averaging modeling technique. This technique introduces an analytical method to compute for the switching losses and is used to conduct an in-depth analysis of the influence of the switching frequency and parasitic resistance of components on converter efficiency. The obtained results enable the selection of switches and switching frequency to minimize losses. Moreover, simulation results and experimental measurements validate the analytical calculations.

Computer Simulation of Hemispherical Forming Process Texture-based Work hardening and Anisotropy (집합조직 기초 가공경화와 이방성에 의한 반구 성형공정의 전산 시뮬레이션)

  • Sim, J.K.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.199-202
    • /
    • 2006
  • The hardening and anisotropy based on the crystal plasticity is considered in the numerical simulation of hemispherical sheet forming process to find more realistic simulation results For calculating the yield shear stresses of each crystal, Taylor's model of the crystalline aggregate is employed. The yield stress of crystalline aggregate is computed by averaging the yield stresses of the crystal. The hardening is evaluated by using the Taylor factor and the critical resolved shear stress of the crystal. In addition, by observing the crystallographic texture and slip system, the anisotropy of the sheet is traced during the forming process. The anisotropy and hardening behaviors of the sheet found by the crystal plasticity are described better than those of obtained from the Hill's quadratic criterion based on the continuum plasticity.

  • PDF

Bitwise Collision Attack Based on Second-Order Distance

  • Wang, Danhui;Wang, An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1802-1819
    • /
    • 2017
  • Correlation-enhanced collision attack has been proposed by Moradi et al. for several years. However, in practical operations, this method costs lots of time on trace acquisition, storage and averaging due to its bytewise collision detection. In this paper, we propose a bitwise collision attack based on second-order distance model. In this method, only 9 average traces are enough to finish a collision attack. Furthermore, two candidate models are given in this study to distinguish collisions, and the corresponding practical experiments are also performed. The experimental results indicate that the operation time of our attack is only 8% of that of correlation-enhanced collision attack, when the two success rates are both above 0.9.

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

Automation of the Parameter Measurement of D.C. Servomotors Using a Microcomputer (마이크로 컴퓨터를 이용한 직류 서어보전동기의 파라미터 측정의 자동화)

  • Chung, Hee-Young;Park, Gwi-T.;Lim, Young-H.;Jang, Young-H.;Cho, Kyeung-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.12-15
    • /
    • 1989
  • This paper describes the efforts to develop an PC based parameter identification system for the D.C. servomotor. The whole identification process of signal generation, measuring, parameter determination is fully automated. To minimize errors due to the ripple component in the measured armature current, digital averaging filter is employed. The proposed parameter correction method using the deadzone current and the time to reach the peak current resulted in excellent agreement between the measured current and estimated current using the model.

  • PDF

UAV(Unmanned Aerial Vehicle) image stabilization algorithm based on estimating averaged vehicle motion (기체의 평균 움직임 추정에 기반한 무인항공기 영상 안정화 알고리즘)

  • Lee, Hong-Suk;Ko, Yun-Ho;Kim, Byoung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.216-218
    • /
    • 2009
  • This paper proposes an image processing algorithm to stabilize shaken scenes of UAV(Unmanned Aerial Vehicle) caused by vehicle self-vibration and aerodynamic disturbance. The proposed method stabilizes images by compensating estimated shake motion which is evaluated from global motion. The global motion between two continuous images modeled by 6 parameter warping model is estimated by non-linear square method based on Gauss-Newton algorithm with excluding outlier region. The shake motion is evaluated by subtracting the global motion from aerial vehicle motion obtained by averaging global motion. Experimental results show that the proposed method stabilize shaken scenes effectively.

  • PDF

A State Space Analysis on the Stability of Periodic Orbit Predicted by Harmonic Balance

  • Sung, Sang-Kyung;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.5-67
    • /
    • 2001
  • A closed loop system with a linear plant and nonlinearity in the feedback connection is analyzed for its quasi-static orbital stability by a state-space approach. First a periodic orbit is assumed to exist in the loop which is determined by describing function method for the given nonlinearity. This is possible by selecting a proper nonlinearity and a rigorous justification of the describing function method.[1-3, 18, 20]. Then by introducing residual operator, a linear perturbed model can be formulated. Using various transformations like a modified eigenstructure decomposition, periodic-averaging, charge of variables and coordinate transformation, the stability of the periodic orbit, as a solution of harmonic balance, can be shown by investigating a simple scalar function and result of linear algebra. This is ...

  • PDF

Computation of Turbulent Flows around Full-form Ships

  • Van Suak-Ho;Kim Hyoung-Tae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.118-125
    • /
    • 1995
  • This paper presents the result of a computational study on the wake characteristics of two tanker models. i.e HSVA and DYNE hull forms. The focus of the study is on the distributions of axial. radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull forms. the incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are numerically solved by the use of a second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial. radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution for the both hull forms.

  • PDF