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Abstract 
 

This study analyzes a ladder multilevel converter (double ladder topology) with the use of a new averaging modeling technique. 
This technique introduces an analytical method to compute for the switching losses and is used to conduct an in-depth analysis of the 
influence of the switching frequency and parasitic resistance of components on converter efficiency. The obtained results enable the 
selection of switches and switching frequency to minimize losses. Moreover, simulation results and experimental measurements 
validate the analytical calculations. 
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I. INTRODUCTION 
Achieving high efficiency on power converters is one of the 

main issues of power electronics [1], [2], [37], [38]. Two main 
issues related to efficiency are conduction and switching losses. 
Conduction losses can be resolved by reducing the ON 
resistance on power MOSFETs, reducing the forward voltage 
on power diodes or IGBTs and using passive components with 
low parasitic resistance [22]-[26]. Semiconductor devices are 
also becoming faster. Power diodes with low reverse recovery 
current have also been developed to reduce switching losses 
[3]. 

In addition to the reduction of switching losses, 
semiconductor devices with high reverse voltage have also 
been developed. Although these new devices expand the 
possibilities for high-voltage and high-frequency use, classical 
converters, such as buck or boost, still face some limitations in 
terms of applications of several kilovolts [4]-[8], [27], [28]. 
Multilevel converters were proposed to deal with the 
high-voltage problem of classical converters. Multilevel 
converters manage the high-voltage problem (several kilovolts) 
with the use of low-voltage components (hundreds of volts). 
Among the multilevel converters, some, such as the ladder 
multilevel DC/DC converter, use only capacitive components 

(switched capacitors (SC)) in their power circuit, reducing size 
and weight [9]-[15], [29]-[31]. In [16], the classical ladder 
topology (CLT) and two variations were presented. The double 
ladder topology (DLT) was shown to produce less output 
resistance and less output voltage ripple, which makes this 
topology highly efficient and suitable for implementation. 

In addition to efficiency, a control law is required by power 
converters. In most cases, a mathematical model of the 
converter is required. These converters are often modeled with 
the use of the classical averaging technique [32]. However, this 
technique works under the assumption of slow dynamics on 
each switching state. If such assumption is unfulfilled, then an 
inaccurate model can be obtained. 

In an SC converter, capacitors with different voltages can be 
connected in parallel, producing current spikes. Given that the 
equivalent series resistance (ESR) of the capacitors and the ON 
resistance of the interconnection switches are usually small, the 
equivalent time constant τ of the resulting circuit is also small. 
Therefore, the dynamics are rapid compared with the switching 
period T (see Fig. 1). With consideration of the rapid dynamics 
of the current of the capacitors, the assumption for the classical 
averaging model is unfulfilled. In [17], a new analytical 
modeling technique that obtains an equivalent continuous 
model of a switched converter regardless of the dynamics on 
each switching state is proposed. The technique is called 
generalized equivalent continuous model (GECM). In this 
study, this technique is used to analyze the behavior of the 
converter and optimize its efficiency. 

Fig. 1 shows that, for a small  (i.e., small ESR and switch  
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Fig. 1. Capacitor current waveform for different  values.  
represents the switching period. 

 
ON resistance), the current waveform presents an exponential 
shape and higher current spikes than for a large  value (i.e., 
higher ESR and switch ON resistance). Moreover, given the 
charge balance, the waveforms should have the same average 
in each cycle. If the average is the same, then we can conclude 
that the exponential waveform has a higher root mean square ( )  value. Therefore, reducing the resistor value  
implies an increase in the  value. Given that the power 
losses in resistor  are expressed as   , no conclusion on 
power losses can be easily drawn. 

In [1], [18]-[20], [33], and [34], power losses in SC 
converters are resolved and analyzed. In SC converters, 
reducing the ON resistance of the switches or ESR does not 
necessarily imply higher efficiency. In [1] and [18], analytical 
calculations of the conduction energy losses of an SC converter 
are presented. These calculations are essentially the same that 
the GECM conducted under all matrix operations. Therefore, 
the results of conduction losses only are the same. However, 
the GECM is easier to compute using a convenient state space 
form and works for any circuit topology modeling its dynamics. 
In [33], an analysis method that completely omits parasitic 
resistances is presented. Therefore, it cannot be computed in 
the state space form (GECM). References [20] and [34] 
provide a basic mathematical demonstration on how an ideal 
SC converter (without parasitic resistances) generates energy 
losses and how to prevent energy losses. However, no specific 
calculation of the losses is conducted. In [19], a different 
approach is presented. Using the example proposed in Section 
VI of reference [19], an approximation of the output resistance 
is obtained at the switching frequency of 30	MHz, producing a 5% error. This error can be eliminated using GECM. Notably, 
none of the previous works considered switching losses. 

In this study, the GECM approach is applied to the DLT 
converter with eight cells for high-voltage application. The 
components of the converter are selected to optimize its 
efficiency with consideration of conduction and switching 
losses. Moreover, the converter is implemented and 
experimental measurements are taken. 

This paper is organized as follows: Section II presents the 
DLT. Section III highlights the different modeling techniques.  

 
 

Fig. 2. DLT of a DC/DC voltage multilevel elevator with  
cells.  and  are complementary. Average currents are 
shown during each cycle. 

 
Section IV analyzes the switching losses. Finally, Section V 
demonstrates the efficiency of the DLT with the use of the new 
modeling technique. 
 

II. LADDER MULTILEVEL CONVERTER 
Fig. 2 shows the generalized DLT proposed in [16]. This 

converter has   basic cells (Fig. 3) and an ideal output 
voltage  = ( + 1) . This converter works with two 
control signals, one with 50% duty cycle for switches  
and the other complementary for switches  [21], [35]. 
The DLT presents less output voltage drop and less ripple in 
comparison with the CLT [16]. 

The basic cell shown in Fig. 3 consists of two capacitive 
elements ( and ) and four switching components (two   and two  ). When switches   are ON  while   are OFF , the input voltage source   charges the 
capacitor  . In the other half cycle, with   ON and  OFF, the capacitor  charges the capacitor , which 
ideally results in  = 2 . 

The connection between capacitors is affected by the ON 
resistance of the switches and the ESR of each capacitor, thus 
producing voltage drops. Furthermore, the time constant of 
the equivalent circuit, which depends on the capacitance and 
resistance values, affects the current waveform on the 
capacitors: a large time constant produces a square waveform, 
whereas a small time constant produces an exponential 
waveform, as previously shown in Fig. 1. 

As stated previously, when the time constant is small 
compared with the switching period, the classical averaging 
model cannot produce an accurate model [17]. 
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Fig. 3. Basic cell of the ladder multilevel converter. 
 

III. MODELING TECHNIQUES 
The model of ladder converters can be written as a 

switched system. Mode 1 is represented by  = 1  and 

occurs when ( )1 2ON OFFSW SW= = . Mode 2 is 

represented by  = 2  and occurs when 

( )1 2OFF ONSW SW= = . Thus, the dynamics of the 

converter can be written as follows: ̇ =  + 										if	Mode	1 + 										if	Mode	2,     (1)  =  + 										if	Mode	1 + 										if	Mode	2,     (2) 

where  and ̇ are the voltages of the capacitors and their 
derivatives, respectively.  represents input variables (input 
voltage  ) and   represents output variables (output 
voltage  ). The matrices of each mode , , ,  
and , , ,  can be computed using classical circuit 
analysis. The values of these matrices depend on the value of 
each capacitor, as well as the values of the ESR and the 
resistances of the switches. 
From this switched model, we can deduce two modeling 
techniques, namely, the classical averaging model and the 
GECM. 

A. Classical Averaging Model 
When we assumed that the state space vector  is constant 

when each mode is active, the classical averaging technique 
is deduced [32]. With this assumption, the average model 
from Eqs. (1) and (2) can be computed as follows: 

 〈̇〉 =  + (1 − )〈〉 〈〉 +  + (1 − )〈〉 ,			  (3) 

		〈〉 =  + (1 − )〈〉 〈〉 +  + (1 − )〈〉 ,   (4) 

 

where 〈∗〉 is the average of the argument and  is the duty 
cycle. However, as shown in Fig. 1, capacitor voltages in 
ladder topologies can considerably vary during each mode. 
Then, classical averaging model is not an appropriate method 
to characterize ladder converters. 

B. Generalized Equivalent Continuous Model 
A new analytical modeling technique was proposed in [17] 

to deal with high-speed dynamics. In this method, the 
assumption of slow variation in the state vector  during 
each mode is eliminated. This subsection briefly presents the 
method. The following steps show the procedure to obtain 
this model: 

 

1) Obtain the State Space Matrices of Each Switching State: 
The analysis starts with the matrices , ,  , and  
for  = {1,2}. These matrices are obtained from the model 
shown in Eqs. (1) and (2). 
2) Reorganize the State Space Matrices: Previous matrices 
are unsuitable for the model. Then, the matrices  , ℱ ,, 
and ℱ are computed as follows: 

  =  0 0 																ℱ = [ ]												(5) 

with  = {1,2}. Thus, the system is transformed into    ̇ =                   (6)  = ℱ																																										(7) 
where  = [				]																																			(8) 
3) Calculate ()  and ((1 − )) : The state 
transition matrices are computed, but have to be evaluated in  . Thus, () and () are expressed as follows: () =  										() =  .    (9) 
4) Calculate  : Matrix   represents the transition 
matrix in one switching period  . The two modes are 
presented in this matrix.   is computed as follows:  = (1 − )(),       (10) 
5) Calculate   and  :   and   are defined as the 
integrals of the functions ()  and () , respectively. 
These integrals enable the generation of the average 
dynamics of each mode, which are obtained as follows:  =  ∫ ()d								 =  ∫() ()d. (11) 
An analytical solution of   and   exists when  ,  = {1,2}  is nonsingular. In this case, we obtain the 
following equation:  =  ∫ ()d = (() − ),   (12) 
where  =   and  = 1 −  . When   is singular, it 
should be numerically computed. Indeed, numerical 
integration is an approximation of the integral real value. 
6) Calculate : Defining the matrix  in the function of  
and  is also necessary. Using the results of the previous 
step, the value of  can be computed as follows:  =  + ().            (13) 
7) Obtain the Matrix 〈〉: The proposed continuous model is 
expressed as follows: 〈̇〉 = 〈〉〈〉 + 〈〉.            (14) 
Information on 〈〉  and 〈〉  is inside matrix 〈〉 . This 
matrix describes the average dynamics and can be obtained as 
follows: 
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Fig. 4. Switching modes with parasitic resistances. (a)  ON;  OFF. (b)  OFF;  ON. 
 

 
Fig. 5. Comparison of the classical averaging model, the GECM, 
and the switched response. 
 〈〉 =   ln() .           (15)   and   are previously defined. Indeed, 〈〉  has the 
following form: 〈〉 = 〈〉 〈〉0 0 .              (16) 

Then, 〈〉 and 〈〉 can be derived from 〈〉. 
8) Calculate ℱ : Matrix ℱ  is necessary to compute the 
output model, as follows: ℱ = ℱ +ℱ().          (17) 
9) Obtain the Matrix 〈ℱ〉: The continuous model for 〈〉 is 
obtained using Eq. (14). The continuous model for the output  is obtained as follows: 〈〉 = 〈〉〈〉 + 〈〉.            (18) 

As shown in Step 7, matrix 〈ℱ〉 exists, which contains 〈〉 and 〈〉. This matrix is expressed as follows: 〈ℱ〉 = [〈〉 〈〉],              (19) 
where 〈ℱ〉 is derived from: 〈ℱ〉 = ℱ,               (20) 
where ℱ  and   are derived from Eqs. (17) and (13), 
respectively. 
10) Obtain the Final State Space Matrices: Finally, the 
results from Steps 7 and 9 are separated as shown 
respectively in Eqs. (16) and (19), to obtain the state space 
matrices 〈〉, 〈〉, 〈〉, and 〈〉. These matrices describe the 
average system behavior. 

C. Basic Cell Example 

In this section, the GECM is applied to the basic ladder 
multilevel converter shown in Fig. 3. Fig. 4 shows the two 
possible modes of the basic cell, with the parasitic resistances 
of each component (ESR of capacitors denoted as   and ON resistance of the MOSFETs denoted as ). 

To obtain a model of the system in state space variables, 
such as in Eqs. (1) and (2), the state space vector , the input , and the output  are defined as follows: 

  = [ ],				 =  ,				 =  .    (21) 
 

For the mode shown in Fig. 4(a), the state space matrices 
are calculated as follows: 

  =  () 00 ( ) , =  ()( ),				 = 0   , =  .
   (22) 

 

For the mode shown in Fig. 4(b), the state space matrices 
are calculated as follows: 

  =  ( )  ( )  ,
 =  ()  , = [  ( + 2)], = 2 ( + ),

 (23) 

with:  = 1( + 2( + )) + 2 . 
 

For this numerical example, we considered the following 
values of the components:  = 1.8	Ω,  =  = 2.2	μF,  = 2.5	mΩ, and  = 50	Ω. The switching frequency 
for this example is  = 50	kHz, with a duty cycle  = 0.5. 

The equivalent state space matrices that describe the 
system behavior using classical averaging model are 
computed. The matrices are expressed as follows: 

 〈〉 = −126.13 63.0463.04 −78.18 × 10, 〈〉 = 63.08−15.15 × 10〈〉 = [0.00035 0.999] , 〈〉 = 0.999 . (24) 

 

The matrices for the GECM, following the steps previously 
explained, are expressed as follows: 

 〈〉 = −134.67 65.658.78 −69.65 × 10, 〈〉 = 69.81−19.49 × 10〈〉 = [0.00011 0.999] , 〈〉 = 1 . (25) 
 

Fig. 5 shows a comparison of the step response for both 
models (classical averaging and GECM) and the real behavior 
of the converter in simulation. We observed that the GECM 
produces better results than the classical averaging model 
because it is capable of computing the real average of  . 
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For more information on this example, see [36]. 
 

IV. SWITCHING LOSSES 
In this section, an analytical method to estimate the 

switching losses of the converter is presented. This method 
uses the results of the GECM to analyze the system 
dynamics. 

A. General Case 
Let the voltages of the switches (open) and their currents 
(closed) be organized as follows:  = [ ,  , … ,  ], = [ ,  , … ,  ],      (26) 

where  is the number of switches. 
The matrix  from Eq. (10) defines a discrete model of 

the initial conditions of the mode  = 1. Therefore, the 
following model can be defined using Eq. (26): (( + 1)) = (),															   (27a)  = ℋ(),															    (27b)  = (),															     (27c) 
where:  = [				],              (28) 
with  being the discrete version of  and  being the 
discrete version of . 

Matrices ℋ  and   represent the relationship between 
open voltages   and closed currents   of the 
switches, the capacitor voltages, and the input (). 

Fig. 6 shows the switching waveforms of a switch with a 
trapezoidal approximation of the switching losses. We 
assumed that the turn-on and turn-off times are small as 
compared with the system time constant. Under this 
assumption, the value of the state space vector is the same 
right before switching and right after switching (i.e., the value 
of the state space vector is (0) in time instants marked as  and  in Fig. 6). Therefore, the voltages of the switches 
(open) and their currents (closed) can be computed in terms 
of  regardless their state in each subsystem. 

Notably, all voltages and currents in the instants marked as   and   in Fig. 6 are calculated. Computing the same 
voltages and currents in the next switching instant  is also 
necessary. The state space vector in the next switching instant 
can be defined as follows:  = ().               (29) 

Using this definition, additional voltages and currents can 
be computed and added to the system in Eq. (27), expanding 
matrices ℋ and  as follows: ℋ∗ = [ℋ				(ℋ())],∗ = [					(())],         (30) 

Therefore, the new system is defined as follows: (( + 1)) = (),																					(31a) ∗ = ℋ∗(),																					(31b) 

 
Fig. 6. Switching waveforms of  with switch turn-on time   and turn-off time  . 

 ∗ = ∗().															       (31c) 
Similar to the case of the GECM, the matrices of Eq. (31) can 
be decomposed to be used with the original discrete state 
space vector  and the input , as follows:  =  0   , ℋ∗ = [∗ ∗], ∗ = [∗ ∗]. (32) 

To compute the switching losses in steady state, the 
steady-state value of the outputs is required. The steady-state 
values of the voltages and currents can be computed as 
follows: ∗  = (∗( − ) + ∗),												(33a) ∗  = (∗( − ) + ∗).												(33b) 

Finally, the switching losses in steady state can be obtained 
using the previous results as follows:  = ∗  ∗  , (34) 
where: 			 =   (, 1), … , ( , 1), (, 2), … , ( , 2)  

(35) 
and ( , ) =  If		 		is		ON		when		 =  − , (36) 

where the function  (∗)  generates a diagonal matrix 
with the elements of the argument. Matrix  is scaled by 1/6  because of the trapezoidal resistive switching 
approximation [37]. 

B. Basic Cell Example 
In this subsection, a numerical example on how to compute 

the switching losses is applied to the basic ladder multilevel 
converter shown in Fig. 3. The switches are numbered from 
bottom to top (Fig. 3). Only the computation of the losses for 
switches   and   is shown. Therefore, the following 
vectors can be defined:  = [ ,  ], = [ ,  ].             (37) 

1) Compute the Voltages and Currents of the Switches: We 
compute the matrices ℋ and  from Eq. (27). For instance, 
the calculation of the open voltage of   should be 
computed in the mode  = 2 (Fig. 4(b)) and  should be 
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computed in the mode  = 1 (Fig. 4(a)), as follows: 
 	ℋ = −( +  )   1 −() 0 1 + ( ),

 (38)  =  () 0 ()( +  ) − ( + 2), (39) 

 

where:  = (( )) .       (40) 
 

Replacing numerical values, the following results are 
obtained: 

 ℋ = −0.4993 0.4993 10.4997 0 0.5003,         (41)  = −0.2776 0 0.27760.2774 −0.2774 0.43 × 10.    (42) 
 

2) Create the Matrices ℋ∗ and ∗: We expand the matrices ℋ and  using Eq. (9), as follows: 
 ℋ∗ = [ℋ				(ℋ())]≈ −0.4993 0.4993 10.4997 0 0.5003−0.1414 0.4979 0.64070.1415 0 0.8585,        (43) 

∗ = [ 				(())]≈ −0.2776 0 0.27760.2774 −0.2774 0.43 × 10−0.0786 0 0.07860.0785 −0.2766 0.1996 .   (44) 

 

3) Create Matrix : The matrix  contains the information 
on the turn-on and turn-off time of the switches. For this 
numerical example,  = 200	ns and  = 150	ns. 
  =   ((, 1), (, 1), (, 2), (, 2))

=  ⎣⎢⎢
⎡ 0 0 00  0 00 0  00 0 0  ⎦⎥⎥

⎤  (45) 

 = 1.7 0 0 00 1.2 0 00 0 1.2 00 0 0 1.7 × 10 
 

4) Decompose the Matrices: We obtain the matrices from Eq. 
(32) using the results in Eqs. (10), (43), and (44), as follows: 
  = 0.1529 0.45790.13 0.5373 ,  = 0.38480.3257∗ = −0.4993 0.49930.4997 0−0.1414 0.49790.1415 0  , ∗ = 10.50030.64070.8585
∗ = −0.2776 00.2774 −0.2774−0.0786 00.0785 −0.2766Ω, ∗ = 0.27760.43 × 100.07860.1996 

 

(46) 

 
Fig. 7. Comparison of theoretical efficiency with simulation for 
the basic cell. 
 
5) Compute the Steady-State Values of the Currents and 
Voltages: We compute the steady-state values of the voltages 
and currents using Eq. (33) and the results of the previous 
step ( =  = 340), as follows: 
 ∗  = 339.37337.34336.51339.25, ∗  = 

1.480.3490.4191.939.  (47) 

 

6) Compute the Switching Power Losses: 
Using Eqs. (34) and (45) and the results of the previous 

step, the total switching power losses for  and  can be 
computed as follows: 

  = ∗  ∗  = 2.26	W.   (48) 
 

With consideration of the switching power losses, the 
efficiency of the converter can be computed as follows: 

  =   .            (49) 
 

For this case, the output voltage of the converter is not 
significantly affected by switching losses. Therefore,   
and   can be computed with the GECM. Fig. 7 shows a 
comparison between the theoretical calculation of efficiency 
(with and without switching losses) and the respective 
simulations for different switching frequencies while 
considering all switches in the basic cell. The estimation 
obtained using the analytical method reflects correctly the 
behavior of these losses. 
 

V. ANALYSIS OF THE CONVERTER 

In this section, the DLT is analyzed using the new 
techniques introduced in Sections III and IV. An in-depth 
analysis is conducted for this topology to show the effect on 
the efficiency caused by the switching frequency and the 
parasitic resistances of the switches. The GECM is validated 
using the DLT in [36]. 

Fig. 8 shows an equivalent model of the converter. In this 
model,  represents the ideal voltage gain and the resistance 
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Fig. 8. Equivalent model of an SC converter with a DC/DC 
transformer, where  is the gain of the converter with no load 
and   is the output resistance. 

 
   represents the losses. The resistance   is 
dependent on the switching frequency of the converter and 
the values of ON resistances of the switches and ESR of the 
capacitors. 

Given that the new modeling technique is able to model 
accurately the SC converter, it is used to analyze and 
optimize the DLT for implementation. 

The nominal values of the converter are as follows: input 
voltage  = 350	V; output voltage  = 3,000	V; output 
current  = 100	mA; number of cells  = 8. For this 
example, a commercial capacitor  = 2.2	μF ,  =2.5	mΩ is used. 

Using the GECM, we observed that the duty cycle of 
maximum gain is independent of the load value and 
switching frequency and is always  = 0.5. Moreover, the 
gain /  is insufficient to use   as control signal. 
Therefore, the duty cycle is set to a constant value  = 0.5. 
As mentioned previously, no conclusion on efficiency can be 
easily drawn because of the effect on the current waveform 
when the time constants are small compared with the 
switching period. Using the results obtained in Section IV, 
the efficiency of the converter can be computed analytically. 

The following criteria is considered when selecting an 
adequate value for the switching frequency and  : The 
value of   should be as high as possible without 
compromising efficiency. In this converter, the lower the , 
the higher the current spikes in the switches, producing 
overcurrents. 

Fig. 9 shows efficiency as a function of  and . The 
values of   and   are selected as follows: First, the 
highest possible value of  that can be classified into the 
lighter region is selected and restricted to commercial values. 
A frequency value that can also be classified into this region 
is then selected. Fig. 10 shows the detailed effect of switching 
frequency on a given . The value that produces the highest 
efficiency can be easily selected. The values of  = 1.8	Ω 
(N-MOS transistor P8NK100Z) and  = 80	kHz  are 
selected, with an efficiency of 92.5% . We observed no 
increments in efficiency of over 1% for any other possible 
values of frequency and resistance. 

Fig. 10 shows the efficiency of three different switch 

 
Fig. 9. Efficiency as a function of the switch resistance  and 
switching frequency  . The dot marks the selected values  = 1.8	Ω and  = 80	kHz, with an efficiency of 92.5%. 
 

 
Fig. 10. Comparison of the efficiency obtained using the 
theoretical model for three different values of switch ON 
resistance  (conduction losses only (CL) and conduction and 
switching losses (CL+SL)). 
 

 
Fig. 11. Comparison of the efficiency obtained using the 
theoretical model with and without switching losses, simulation 
results, and experimental measurements with  = 1.8	Ω. 
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resistances as a function of switching frequency to compare 
in detail the influence of switching frequency and switch 
resistance. The results of the GECM (where no switching 
losses are considered) are compared with the results of the 
GECM with the addition of switching losses for each switch. 
When the charging and discharging process of capacitors is 
completed in one switching period, the losses are independent 
of the  (conduction only) value and are attributed to the 
inherent energy losses caused by voltage differences of the 
capacitors when they are connected. However, including 
switching losses, at low frequencies, the lower the , the 
higher the losses. 
Although efficiency is slightly higher with  = 0.18	Ω at 
different frequencies in comparison with  = 1.8	Ω  at  = 80	kHz  (increment < 1% ), the current spikes are 
dramatically higher with  = 0.18	Ω  (up to 16.6	A ) in 
comparison with the selected values (up to 3.3	A). 

Experimental measurements are conducted to validate the 
analysis of the converter. Fig. 11 shows a comparison among 
the analytical, simulated, and experimental efficiencies. The 
simulated and experimental results present a relative error 
below 4%  compared with the analytical results, with 
switching losses for all the tested cases. Power loss attributed 
to switching is 5.5%, with  = 1.8	Ω and  = 80	kHz. 
 

VI. CONCLUSIONS 

In this study, a method for computing switching losses is 
introduced, and a new modeling technique is used to analyze 
the efficiency of an SC converter. This technique is helpful 
when the dynamics of each mode of the switched system are 
characterized as rapid when compared with the switching 
period. 

The DLT was analyzed with the use of the new model, and 
the optimal parameter values were obtained. We observed 
that the highest efficiency is not necessarily achieved with the 
smallest resistor values and it depends on the switching 
frequency. Therefore, careful analysis is required to achieve 
the highest efficiency point. 

Experimental measurements and simulations were 
conducted to validate the analytical results. An efficiency of 92.5% was obtained at 80	kHz, with switching losses of 5.5%. 
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