• Title/Summary/Keyword: Average wave height

Search Result 50, Processing Time 0.039 seconds

A Fundamental Study for the Construction of Artificial Beaches (인공해수욕장(人工海水浴場) 건설(建設)을 위한 기초연구(基礎硏究))

  • Ryu, Cheong Ro;Chang, Sun Duck;Kim, Soong Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 1988
  • Some promising design criteria for the construction of artificial beaches are presented. Based on the result of visitor's enquete and field observations, the degree of satisfaction for some parameters such as wave height, water and air temperature and quality of sediments are obtained. Correlations between these parameters and the degree of satisfaction are also derived and discussed. From the study, the desirable design conditions for artificial beaches with the degree of satisfaction over 70% are proposed as; the minimum comfortable utilization area per capita is found to be approximately $10m^2$, maximum mean wave height 0.7m, the lowest water temperature $22^{\circ}C$, average diameter of sands 0.5mm approximately with identical grain size and roundness, and the foreshore slope less than 1 : 20.

  • PDF

Characteristics of Tsunamis and Mitigation Planning (지진해일의 특성 및 방재대책)

  • Cho, Yong-Sik;Ha, Tae-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.295-300
    • /
    • 2010
  • Recently, many tsunamis triggered by impulsive undersea ground motions occurred in subduction zones around the Pacific Ocean area including the East Sea surrounded by Korea, Japan and Russia. The wave height of a tsunami may be in the order of several meters, while the wavelength can be up to 1,000 km in the ocean, where the average water depth is about 4 km. A tsunami could cause a severe coastal flooding and property damage not only at neighboring countries but also at distant countries. A fundamental and economic way to mitigate unusual tsunami attacks is to construct tsunami hazard maps along coastal areas vulnerable to tsunami flooding. These maps should be developed based on the historical tsunami events and projected scenarios. The map could be used to make evacuation plans in the event of a real tsunami assault.

Physical Environments of Suyong Bay during the Rip Current Events at Haeundae - August 2009 (해운대 이안류 발생 시 수영만의 물리환경 - 2009년 8월)

  • Lee, J.C.;Kim, D.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.110-114
    • /
    • 2010
  • A data set of current, wind and wave height measured at the monitoring buoy and sea level at Busan harbor were analyzed to explain the physical conditions during the strong rip current events at Haeundae Beach of Suyeong Bay during 13~15 August 2009. Tidal current, with spring-neap variations, has similar average speed to the short-term non-tidal currents. The common features at the time of rip currents are the strong northeasterly wind and superposition of tidal and non-tidal currents both flowing toward the coast. However on 14 August when the rip current did not occur, tide and wave height were similar to the rip-current cases but the tidal and non-tidal current were to nearly opposite directions. While strong winds produce large waves thus the basic condition for rip current but its influence on the local circulation in the bay is relatively small. Of the three adjacent beaches, only at Haeundae the rip currents are reported. This difference may be due to the unique bottom topography featured by underwater hill in the central region off Haeundae which can decay the incoming waves, tides and currents to intensify the rip current.

Shoreline Changes due to the Construction of Offshore Structure and its Numerical Calculation (이안 구조물 건설에 따른 해안선의 변화와 수치계산)

  • 신승호
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • A numerical model for practical use based on the 1-line theory is presented to simulate shoreline changes due to construction of offshore structures. The shoreline change model calculates the longshore sediment transport rate using breaking waves. Before the shoreline change model execution, a wave model, adopting the modified Boussinesq equation including the breaking parameters and bottom friction term, was used to provide the longshore distribution of the breaking waves. The contents of present model are outlined first. Then to examine the characteristics of this model, the effects of the parameters contained in this model are clarified through the calculations of shoreline changes for simple cases. Finally, as the guides for practical application of this model, several comments are made on the parameters used in the model, such as transport parameter, average beach slope, breaking height variation alongshore, depth of closure, etc. with the presentation of typical examples of 3-dimensional movable bed experimental results for application of this model. Here, beach change behind the offshore structures is represented by the movement of the shoreline position. Analysis gives that the transport parameters should be taken as site specific parameters in terms of time scale for the shoreline change and adjusted to achieve the best agreement between the calculated and the observed near the structures.

  • PDF

Development of New Type of Submerged Breakwater for Reducing Mean Water Level behind Structure (배후수위 저감효과를 가진 신기능 잠제의 개발)

  • Hur, Dong-Soo;Lee, Woo-Dong;Goo, Nam-Heon;Jeon, Ho-Seong;Jeong, Yeon-Myeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.130-140
    • /
    • 2017
  • Typically, a submerged breakwater is one of the good scene-friendly coastal structures used to reduce wave energy and coastal erosion. However, sometimes, a submerged breakwater also has a negative aspect in that a strong rip current occurring around an open inlet due to a difference in mean water levels on the front and rear sides of the structure leads to scouring. Such scouring has a bad effect on its stability. In order to eliminate this kind of demerit, this study investigated four new types of submerged breakwaters with drainage channels. First, hydraulic experiments were performed the typical and new structures. Then, the wave height and mean water level distributions around the structures were examined using the experimental results. Finally, it was revealed that the new type of submerged breakwater could efficiently reduce the mean water level on its rear side. In particular, in the case of new-type submerged breakwater 2, an average reduction efficiency of 71.2% for the difference between the mean water levels at the front and rear sides was shown in comparison with the typical one.

Dispersion Effects of Wave Force on Interlocking Caisson Breakwater with Shear-Key (전단키형 인터로킹 케이슨 방파제의 파력분산효과)

  • Song, Sung Hoon;Park, Min Su;Jeong, Youn Ju;Hwang, Yoon Koog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • Long caisson breakwaters can improve the structural safety of a caisson due to the wave dispersion effect which reduces the average wave force acting on one caisson. However, in order to make long caissons, there are many manufacturing and construction limitations. Recently, interlocking caisson systems, which are to form a long caisson by interlocking individual caissons with adjacent caissons, have been much attention. In the present study, a interlocking caisson system with shear-keys was proposed and the wave dispersion effect according to the shear-key was evaluated analytically. As a result, (1) Because of the asymmetric shape of the interlocking caisson, the structure behavior and the wave dispersion effect of one are also asymmetric. (2) The wave dispersion effect is more influenced by the distribution and characteristics of wave acting on each caisson rather than the shape of the shear-key such as shear angle, height, shear length ratio. (3) The interlocking caisson breakwater is almost the same behavior and wave dispersion effect as a fully integrated breakwater.

Analysis of Working Time at the Test Site of Southwest Offshore Wind Project in Korea Based on Weather Window (기상조건에 따른 서남해 해상풍력 실증단지 작업시간 분석)

  • Kim, Min Suek;Kim, Ji Young;Kwak, Ji Yeong;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.358-363
    • /
    • 2015
  • As a preparation process for successful establishment of demonstration offshore wind farm, analyses have been made for working time at the construction site where working time is defined as the time available for marine operation to take place under given weather conditions. Data used are hourly wave and wind data from met mast, HeMOSU-1, and 3 hour numerical model data from Korea Meteorological Administration (KMA). Seasonal results show the minimum working time during winter and moderate during autumn and spring. The most working time was seen during summer on average. Monthly analyses show the most working time in May, June, and August which was higher than the working time in July and September. Working time reaches at steady state and no significant change was seen above wave height of 1.5 m and wind speed of 8 m/s.

Variations of the Wind-generated Wave Characteristics around the Kyung-gi Bay, Korea (경기만 근해에서 풍파의 특성 변화)

  • Kang, Ki-Ryong;Hyun, Yu-Kyung;Lee, Sang-Ryong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.251-261
    • /
    • 2007
  • The wind-wave interaction around the Kyung-gi Bay, Korea, was studied using the observed data from ocean buoy at DeuckJeuck-Do from Jan. to Dec., 2005, and from waverider data at KeuckYeulBee-Do on Mar. 19-26 and May 23-28, 2005. Wind-driven surface waves and wave-driven wind speed decrease were estimated from the ocean buoy data, and the characteristics of wave spectrum response were also investigated from the waverider data for the wave developing and calm stages of sea surface, including the time series of spectrum pattern change, frequency trend of the maximum energy level and spectrum slope for the equilibrium state range. The wind speed difference between before and after considering the wave effect was about $2ms^{-1}$ (wind stress ${\sim}0.1Nm^{-2}$) for the wind speed range $5-10ms^{-1}$ and about $3ms^{-1}$ (wind stress ${\sim}0.4Nm^{-2}$) for the wind speed range $10-15ms^{-1}$. Correlation coefficient between wind and wave height was increased from 0.71 to 0.75 after the wave effect considered on the observed wind speed. When surface waves were generated by wind, the initial waves were short waves about 4-5 sec in period and become in gradual longer period waves about 9-10 sec. For the developed wave, the frequency of maximum energy was showed a constant value taking 6-7 hours to reach at the state. The spectrum slope for the equilibrium state range varied with an amplitude in the initial stage of wave developing, however it finally became a constant value 4.11. Linear correlation between the frictional velocity and wave spectrum for each frequency showed a trend of higher correlation coefficient at the frequency of the maximum energy level. In average, the correlation coefficients were 0.80 and 0.82 for the frequencies 0.30 Hz and 0.35 Hz, respectively.

Observations on the Coastal Ocean Response to Typhoon Maemi at the East Sea Real-time Ocean Buoy (동해 실시간 해양관측 부이로부터 관측한 태풍 매미에 대한 연안해양의 반응 고찰)

  • Nam, Sung-Hyun;Yun, Jae-Yul;Kim, Kuh
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.111-118
    • /
    • 2004
  • An ocean buoy was deployed 10 km off Donghae city, Korea at a depth of 130 m to measure meteorological (air pressure, air temperature, wind speed, wind gust, wind direction, relative humidity) and oceanographic data (water properties and currents in the whole column) in real-time. The buoy recorded a maximum wind gust of 25 m/s (10 minutes' average speed of 20 m/s) and a minimum air pressure of 980 hPa when the eye of typhoon Maemi passed by near the Uljin city, Korea at 03:00 on 13 September 2003. The wave height reached maximum of 9 m with the significant wave height of 4 m at 04:00 (1 hour after the passage of Maemi). The currents measured near the surface reached up to about 100 cm/s at 13:00 (10 hours after the passage of Maemi). The mixed layer (high temperature and low salinity) thickness, which was accompanied by strong southward current, gradually increased from 20 m to 40 m during the 10 hours. A simple two layer model for the response to an impulsive alongshore wind over an uniformly sloping bottom developed by Csanady (1984) showed reasonable estimates of alongshore and offshore currents and interface displacement for the condition of typhoon Maemi at the buoy position (x=8.15 km) during the 10 hours.

Topographic Placement(Structure) and Macro Benthos Community in Winter for the Shellfish Farm of Namsung-ri, Goheung (고흥 남성리 패류양식장의 지형 구조와 저서생물 현장 조사)

  • Jo, Yeong-Hyun;Kim, Yun;Ryu, Cheong-Ro;Lee, Kyeong-Sig;Lee, In-Tae;Yoon, Han-Sam;Jun, Sue-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • To understand the variation of macro benthos community according to the installation of structure and topographic placement in the shellfish farm on tidal flat, the practical example of the tidal shellfish growing area at Namsung-ri Goheung was observed. The results of the research for the field observation were summarized as follows. (1) The ground gradient of the shellfish farm was very flat below about $1^{\circ}$. The shellfish farm ground took the shape of $\sqcup$ from the shoreline to the place of 150 m seawards, and the shape of $\sqcap$ from there to the low tide line. During ebb tide, the $\sqcup$ shape ground stored the sea water, and the $\sqcap$ shape ground was supposed to act as the effect factor to leak slowly or to prevent the outflow. (2) The oyster shell bag or the type of riprap wall as the boundary in the shellfish farm was classified into five types. The air exposure time and flooding time were 181 and 434 minutes, respectively. (3) In the numerical experiment, the deep-sea water wave coming in the study area had 0.5 m of maximum wave height to show the very stable conditions and the wave direction pattern of S-direction was dominant at Naro great ridge, and SE, SSW and S-direction were distributed strongly around the shellfish farm. (4) By the grain size analysis, the sediment around tidal flat consisted of gravel 0.00~5.81(average 1.70)%, sand 14.15~18.39(average 13.23)%, silt 27.59~47.15(average 30.84)% and clay 35.79~55.73(average 36.19)%, and the sediment type was divided into (g)M(lightly gravelly mud), sM(sandy mud) and gM(gravelly mud) by Folk's diagram. (5) The macro benthos community survey conducted in this site in January, 2010 showed that 1 species of Mollusca, 8 species of Polychaeta and 2 species of Crustacea appeared, and 11 species occupying over 1% of total abundance were dominant.