• 제목/요약/키워드: Average vibration acceleration

검색결과 43건 처리시간 0.053초

고주파 저스트레인 골자극 인가용 진동 시스템 개발 (Development of the High_frequency and Low_strain Vibration Stimulation System for Stimulating Bone)

  • 유주연;박근철;전아영;김윤진;노정훈;전계록
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권2호
    • /
    • pp.177-184
    • /
    • 2011
  • In this study, the system for application of the bone stimulation was implemented using high frequency and low strain method. The whole system consists of the high frequency and low strain vibration stimulation system 177 for stimulating bone, LVDT sensor, and wireless sensor based on tri-axial accelerometer. To evaluate the usefulness of the system, the frequencies and accelerations from function generator were applied to the vibration stimulation system. The range of frequency was 17 Hz, 30 Hz, 45 Hz, 50 Hz and the range of acceleration was set 0.3 g, 0.6 g, 1g, and 2 g. The measured frequencies and acceleration using LVDT (linear variable difference transformer) sensor and 3-axial accelerometer were estimated and compared. The range of frequencies average difference was from 0.0 to 0.004 Hz. As the standard deviation of frequencies estimated by LVDT sensor and accelerometer was below 0.03 Hz and the output frequencies of function generator were similar: Also the results of t-test were satisfied with conditions of p > 0.05. And the acquired frequencies and acceleration from vibration measuring device module were estimated and analyzed. As the mean of accelerations was similar to the acceleration applied from function generator. And the standard deviation of acceleration estimated from vibration measuring device module was ranged from 0.019 g to 0.038 g. Also the results of t-test were satisfied with conditions of p > 0.05. Therefore, these results were airy similar to the acceleration applied from function generator. As a result, the usefulness of the system was confirmed. n a further study, clinical experiment will be carried out with the authorization of IRB (institutional review board) so that appropriate frequency and strain would be investigated in clinical field.

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.

자주포 보조동력장치 엔진 마운트 강도안전율 향상에 관한 연구 (A Study on Improvement of Strength Safety Factor for K55A1 APU Engine Mounts)

  • 김병현;서재현;박영일;김용욱;김병호
    • 한국군사과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.281-287
    • /
    • 2016
  • The purpose of this study is to analyze the vibration characteristics and develop a mounting which can improve the strength safety factor to replace the high failure rate APU(auxiliary power unit) imported metal mounts with rubber mount that can be domestically produced. For this study, we analyzed in 3 kinds of rubber mounts hardness for the natural frequency to avoid the average excited frequency of the APU. In addition, allowed vibration acceleration of rubber mount confirmed to 90.8 g by adding a strength safety factor. To assure the validity of the design, we measure the vibration acceleration equipped with a metal mount and rubber mount 2 species(Hs 50 and 60). As a result, the proposed design method in this study is reasonable because the rubber mounts is excellent strength safety factor and vibration transmissibility than metal mounts.

평균속도 개념을 적용한 상태공간에서의 과도응답해석 (A Transient Response Analysis in the State-space Applying the Average Velocity Concept)

  • 김병옥;김영철;김영춘;이안성
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.424-431
    • /
    • 2004
  • An implicit direct-time integration method for obtaining transient responses of general dynamic systems is described. The conventional Newmark method cannot be directly applied to state-space first-order differential equations, which contain no explicit acceleration terms. The method proposed here is the state-space Newmark method that incorporates the average velocity concept, and can be applied to an analysis of general dynamic systems that are expressed by state-space first-order differential equations. It is also readily coded into a program. Stability and accuracy analyses indicate that the method is numerically unconditionally stable like the conventional Newmark method, and has a period error of 2nd-order accuracy for small damping and 4th-order for large damping and an amplitude error of 2nd-order, regardless of damping. In addition, its utility and validity are confirmed by two application examples. The results suggest that the proposed state-space Newmark method based on average velocity be generally applied to the analysis of transient responses of general dynamic systems with a high degree of reliability with respect to stability and accuracy.

Seismic response of non-structural components attached to reinforced concrete structures with different eccentricity ratios

  • Aldeka, Ayad B.;Dirar, Samir;Chan, Andrew H.C.;Martinez-Vazquez, Pedro
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper presents average numerical results of 2128 nonlinear dynamic finite element (FE) analyses of lightweight acceleration-sensitive non-structural components (NSCs) attached to the floors of one-bay three-storey reinforced concrete (RC) primary structures (P-structures) with different eccentricity ratios. The investigated parameters include the NSC to P-structure vibration period ratio, peak ground acceleration, P-structure eccentricity ratio, and NSC damping ratio. Appropriate constitutive relationships were used to model the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the vibration periods of the P-structures. Full dynamic interaction was considered between the NSCs and P-structures. A set of seven natural bi-directional ground motions were used to evaluate the seismic response of the NSCs. The numerical results show that the acceleration response of the NSCs depends on the investigated parameters. The accelerations of the NSCs attached to the flexible sides of the P-structures increased with the increase in peak ground acceleration and P-structure eccentricity ratio but decreased with the increase in NSC damping ratio. Comparison between the FE results and Eurocode 8 (EC8) predictions suggests that, under tuned conditions, EC8 provisions underestimate the seismic response of the NSCs mounted on the flexible sides of the plan-irregular RC P-structures.

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

간접 충격을 이용한 압전 방식 진동형 에너지 하베스터 (Piezoelectric Vibration Energy Harvester Using Indirect Impact)

  • 주선아;지창현
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1499-1507
    • /
    • 2017
  • This paper presents an impact-based piezoelectric vibration energy harvester using a freely movable metal sphere and a piezoceramic fiber-based MFC (Macro Fiber Composite) as piezoelectric cantilever. The free motion of the metal sphere, which impacts both ends of the cavity in an aluminum housing, generates power across a cantilever-type MFC beam in response to low frequency vibration such as human-body-induced motion. Impacting force of the spherical proof mass is transformed into the vibration of the piezoelectric cantilever indirectly via the aluminum housing. A proof-of-concept energy harvesting device has been fabricated and tested. Effect of the indirect impact-based system has been tested and compared with the direct impact-based counterpart. Maximum peak-to-peak open circuit voltage of 39.8V and average power of $598.9{\mu}W$ have been obtained at 3g acceleration at 18Hz. Long-term reliability of the fabricated device has been verified by cyclic testing. For the improvement of output performance and reliability, various devices have been tested and compared. Using device fabricated with anodized aluminum housing, maximum peak-to-peak open-circuit voltage of 34.4V and average power of $372.8{\mu}W$ have been obtained at 3g excitation at 20Hz. In terms of reliability, housing with 0.5mm-thick steel plate and anodized aluminum gave improved results with reduced power reduction during initial phase of the cyclic testing.

실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링 (Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head)

  • 서종철;김상환;이돈출
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF

Numerical investigations on the along-wind response of a vibrating fence under wind action

  • Fang, Fuh-Min;Ueng, Jin-Min;Chen, J.C.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.329-336
    • /
    • 2002
  • The along-wind response of a surface-mounted elastic fence under the action of wind was investigated numerically. In the computations, two sets of equations, one for the simulation of the unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, were solved alternatively. The resulting time-series tip response of the fence as well as the flow fields were analyzed to examine the dynamic behaviors of the two. Results show that the flow is unsteady and is dominated by two frequencies: one relates to the shear layer vortices and the other one is subject to vortex shedding. The resulting unsteady wind load causes the fence to vibrate. The tip deflection of the fence is periodic and is symmetric to an equilibrium position, corresponding to the average load. Although the along-wind aerodynamic effect is not significant, the fluctuating quantities of the tip deflection, velocity and acceleration are enhanced as the fundamental frequency of the fence is near the vortex or shedding frequency of the flow due to the occurrence of resonance. In addition, when the fence is relatively soft, higher mode response can be excited, leading to significant increases of the variations of the tip velocity and acceleration.

원자력 전기기기 부품의 내진성능 확인을 위한 진동대 실험 (Shaking Table Test to Verify the Seismic Performance of Nuclear Electric Components)

  • 장성진;전법규;박동욱;김성완
    • 한국지진공학회논문집
    • /
    • 제28권3호
    • /
    • pp.141-147
    • /
    • 2024
  • Earthquakes of magnitude 3.0 or greater occur in Korea about 10 times on average yearly, and the number of earthquakes occurring in Korea is increasing. As many earthquakes have recently occurred, interest in the safety of nuclear power plants has increased. Nuclear power plants are equipped with many cabinet-type control facilities to regulate safety facilities, and function maintenance is required during an earthquake. The seismic performance of the cabinet is divided into structural and functional performances. Structural performance can be secured during the design procedure. Functional performance depends on the vibration performance of the component. Therefore, it is necessary to confirm the seismic performance of the components. Generally, seismic performance is confirmed through seismic simulation tests. When checking seismic performance through seismic simulation tests, it is difficult to determine the effect of frequency and maximum acceleration on an element. In this paper, shaking table tests were performed using various frequencies and various maximum accelerations. The seismic performance characteristics of the functions of electrical equipment components were confirmed through tests.