• Title/Summary/Keyword: Average temperature

Search Result 5,186, Processing Time 0.045 seconds

Ecological Study of Copepoda Community in the Lower Seomjin River System, Korea (섬진강 하류계의 요각류 군집에 관한 생태학적 연구)

  • Kim, Kwang-Soo;Lee, Jong-Bin;Lee, Kwan-Sik;Kang, Jang-Won;Yoo, Hyung-Bin
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.176-186
    • /
    • 2000
  • The present study was carried out to clarify the structure and dynamics of copepod community and the relationship between this community and environmental factors during the period from February 1998 to July 1999. Copepods consists of 21 genera and 32 species, monthly variations of number of species were 15 species in May, 1998 and 2 species November, 1998. The number of species were 22 species in station 12 and station 1, 2, 3 occurred nauplii of copepoda only. Average abundance ranged from $8,330\;ind./m^3$ (in June, 1999) to $177\;ind./m^3$ (in November, 1998). Relationships between water temperature and number of species were as follows: 20 species occurred from 20.1 to $25.0^{\circ}C$ and nuplii of copepoda only occurred from 0.0 to $5.0^{\circ}C$. The number of species by salinity range were 19 species in $20.1{\sim}25.0%_o$ and 9 species in $0{\sim}0.5%_o$. The number of species by trophic state index (TSIm) of chlorophyll a were 25 species in oligotrophic state and 9 species in eutrophic state. Relationships between pH and number of species were as follows: 20 species occurred from 7.6 to 8.0 and from 9.1 to 9.5 was none. The number of species by DO range were 22 species in 6.5 to 7.5 mg/l and 1 species in 14.5 to 15.5 mg/l. The percentage calculated effect by stepwise multiple regression of the pearson correlation coefficient value of environmental factors and copepoda abundance (station 1-station 4) revealed that positive effect was 15.49% in COD, 25.86% in $Cl^-$, 19.75% in $NO_2-N$ and negative effect was 28.30% in $NO_3-N$. Also, Positive effect (station 5-station 12) revealed that 29.49% in water temperature, 28.27% in $NO_3-N$, 22.87% in $NO_2-N$ and negative effect was 30.18% in conductivity and 13.53% in DO.

  • PDF

Environmental and Biological Effects at Narodo, in the Southern Water of Korea, on Bloom of Ichthyotoxic Dinoflagellates Cochlodinium polykrikoides (유해성 Cochlodinium polykrikoides 최초 발생에 관한 나로도 해역의 환경학적 특성 및 식물플랑크톤 군집 구조)

  • Cho Eun Seob
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.225-230
    • /
    • 2005
  • The aim of this study was to examine the fluctuation in phytoplankton assemblages with regarding to environmental conditions and nutrients, which were surveyed quarterly over the fours seasons (February, May, July, and October). In turn, an understanding of biological effects should provide insights into a wide range of initiated Cochlodinium blooms in Narodo. Sampling was carried out throughout 2001 on the coasts of Busan (St. 1), Yeosu (St. 2), Narodo (St. 3), Kohung (St. 4), and Kwangdo (St. 5). The maximum surface water temperature was recorded in July, and it ranged from 20 to $22^{\circ}C$. Salinity showed no great variation, which maintained itself in the range of 29-34 psu. The maximum surface salinity was recorded in February, which was about 34 psu. The chlorophyll $\alpha$ concentration of the surface water ranged from 0.01 to $1.3\;{\mu}g\;1^{-1}$. The concentrations of $NH_{4}-N $ were persistently high from February to October; in particular, the peak was observed at St. 1 in February and May (0.15 and $0.19\;{\mu}mol\;1^{-1}$, respectively), while it was detected at St. 2 in July and October (0.22 and $2.2\;{\mu}mol\;1^{-1}$ respectively). Similar trends to those for $NH_4-N $ were observed in the concentrations of $NO_{2}-N$ and $NO_{3}-N$. In contrast to nitrogen, a distinct peak of $NO_{4}-P$ at St. 3, 4, and 5 was observed throughout year $(0.01-0.1\;{\mu}mol\;1^{-1}$ except for October. At St. 1 encounter a peak of cell number of 30,000 and $13{\times}10^3$ cells $1^{-1}$, respectively, in July and October. During the period of this study, the majority of the taxa were diatoms. The dinoflagellates were rather abundant after February, in particular at St. 3, 4, and 5 which attained an abundance of $10\~20\%$without marked fluctuation during the period of this study. At St. 3, the highest average cell width, $178.11\;{\mu}m$, was recorded: the highest cell length, $337.72\;{\mu}m$, was measured in July. Consequently, dinoflagellates bloom in July at Narodo influenced by warm water current are not only associated with a desirable development of cell morphometric characteristics, but also with the health growth of C. polykrikoides. During the period of this study, warm water currents caused an increased water temperature in Narodo, but did not change the amount of nutrients.

Study on Nucleation and Evolution Process of Ge Nano-islands on Si(001) Using Atomic Force Microscopy (AFM을 이용한 Si (001) 표면에 Ge 나노점의 형성과 성장과정에 관한 연구)

  • Park, J.S.;Lee, S.H.;Choia, M.S.;Song, D.S.;Leec, S.S.;Kwak, D.W.;Kim, D.H.;Yang, W.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.226-233
    • /
    • 2008
  • The nucleation and evolution process of Ge nano-islands on Si(001) surfaces grown by chemical vapor deposition have been explored using atomic force microscopy (AFM). The Ge nano-islands are grown by exposing the substrates to a mixture of gasses GeH4 and H2 at pressure of 0.1-0.5Torr and temperatures of $600-650^{\circ}C$. The effect of growth conditions such as temperature, Ge thickness, annealing time on the shape, size, number density, and surface distribution was investigated. For Ge deposition greater than ${\sim}5$ monolayer (ML) with a growth rate of ${\sim}0.1ML/sec$ at $600^{\circ}C$, we observed island nucleation on the surface indicating the transition from strained layer to island structure. Further deposition of Ge led to shape transition from initial pyramid and hut to dome and superdome structure. The lateral average size of the islands increased from ${\sim}20nm$ to ${\sim}310nm$ while the number density decreased from $4{\times}10^{18}$ to $5{\times}10^8cm^{-2}$ during the shape transition process. In contrast, for the samples grown at a relatively higher temperature of $650^{\circ}C$ the morphology of the islands showed that the dome shape is dominant over the pyramid shape. The further deposition of Ge led to transition from the dome to the superdome shape. The evolution of shape, size, and surface distribution is related to energy minimization of the islands and surface diffusion of Ge adatoms. In particular, we found that the initially nucleated islands did not grow through long-range interaction between whole islands on the surface but via local interaction between the neighbor islands by investigation of the inter-islands distance.

Evaluation of Future Water Deficit for Anseong River Basin Under Climate Change (기후변화를 고려한 안성천 유역의 미래 물 부족량 평가)

  • Lee, Dae Wung;Jung, Jaewon;Hong, Seung Jin;Han, Daegun;Joo, Hong Jun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • The average global temperature on Earth has increased by about $0.85^{\circ}C$ since 1880 due to the global warming. The temperature increase affects hydrologic phenomenon and so the world has been suffered from natural disasters such as floods and droughts. Therefore, especially, in the aspect of water deficit, we may require the accurate prediction of water demand considering the uncertainty of climate in order to establish water resources planning and to ensure safe water supply for the future. To do this, the study evaluated future water balance and water deficit under the climate change for Anseong river basin in Korea. The future rainfall was simulated using RCP 8.5 climate change scenario and the runoff was estimated through the SLURP model which is a semi-distributed rainfall-runoff model for the basin. Scenario and network for the water balance analysis in sub-basins of Anseong river basin were established through K-WEAP model. And the water demand for the future was estimated by the linear regression equation using amounts of water uses(domestic water use, industrial water use, and agricultural water use) calculated by historical data (1965 to 2011). As the result of water balance analysis, we confirmed that the domestic and industrial water uses will be increased in the future because of population growth, rapid urbanization, and climate change due to global warming. However, the agricultural water use will be gradually decreased. Totally, we had shown that the water deficit problem will be critical in the future in Anseong river basin. Therefore, as the case study, we suggested two alternatives of pumping station construction and restriction of water use for solving the water deficit problem in the basin.

Water Quality in a Drainage System Discharging Groundwater from Sangdae-ri Water Curtain Cultivation Area near Musimcheon Stream, Cheongju, Korea (무심천 인근 상대리 수막재배지에서 지하수 사용 후 배출되는 최종 배수로 물의 수질 특성)

  • Moon, Sang-Ho;Kim, Yongcheol;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.409-420
    • /
    • 2015
  • The Sangdae-ri riverside around Musimcheon stream, flowing through Gadeok-myon of Cheongju City, is one of the representative strawberry fields employing water curtain cultivation (WCC) in Korea. In this area, annual groundwater use for WCC has been calculated by a few methods. On the assumption that all the water flowing through the final ditch may be mostly composed of groundwater, the discharge rate in it can be used as a good proxy for assessing the groundwater use. However, in the study area, the final ditch was set up in an unpaved state near and parallel to Musimcheon stream. Under such circumstances, the drainwater is likely to be influenced by infiltration and/or inflow of nearby stream. Hence, we examined whether or not stream water has influenced water flowing out through the final ditch in respect of ion concentrations or field parameters such as T, pH and electrical conductivity (EC) values. The period of measuring field parameters and sample collection was from February 2012 through February 2015. The drainwater in the final ditch did not show the average quality of groundwater, but similar quality of stream water in respect of pH, EC, ion contents and water type. From this, it is suggested that measuring the flow rate of the final ditch should not be directly used for assessing groundwater use in the study area. In addition, because of its sensitivity to ambient temperature, water temperature proved not to be appropriate for estimating the interaction between ditch and stream. For accuracy, additional methods will be needed to calculate mixing ratios between stream and ground water within drainage system.

Studies on Ichthyophthirius multifiliis Fouquet, 1876 in Freshwater Fishes II. Experimental Infection and Development of I. multifiliis (담수산 백점충(Ichthyophthirius multifiliis)에 관한 연구 II. 백점충의 인위 감염 및 어체내 충체 발달상)

  • Ji, Bo-Young;Kim, Ki-Hong;Park, Soo-Il;Kim, Yi-Cheong
    • Journal of fish pathology
    • /
    • v.11 no.1
    • /
    • pp.51-60
    • /
    • 1998
  • Concerned to the lyfe cycle of Ichthyophthirius multifiliis, the experimental infection and development of the parasites were studied in the several freshwater cultured fishes. Opitimum conditions for the propagation of the parasite by serial passage with the rainbow trout fry was observed. Visiable white spots were examined in the body surface, fins and gills of the healthy fries, and a stable infection has been maintained for 2 months in the experimental system (Temperature: $18{\pm}1^{\circ}C$ DO: 7-7.5 ppm; pH: $7{\pm}0.2$). Induction conditions for artificial infection of the parasite by interms of the host fishes, stages of the parasites, and rearing temperature regimes was investigated. Rainbow trout fries showed a positive infection which was resulted from exposure of theront at $18^{\circ}C$. The rainbow trout fries induced white spots on the body surface at 3-7 days exposure to the theronts at $18^{\circ}C$. It was found that exposure of the rainbow trout fries exposed to 1,000 theronts per fish (10 theront/ml) for 45-60 minutes at $18^{\circ}C$ would consistently produce infection. Perfect infection (100%) was induced when the fries were exposed to 1,500 theront per fish (15 theront/ml) under laboratory condition. Development of I. multifiliis in the rainbow trout was observed for 7 days postexposure (PE). The parasite increased in average diameter from $54{\mu}m$ on the 1st day PE to $426{\mu}m$ on the 7th day PE. In the initial infestation period, the parasites were found on the gill epithelium, and on the 3rd day PE they invaded into the basal part of the gill filament adjacent to the major blood vessels, particularly the afferent vessels. Morphological change of buccal apparatus were observed on the 2nd day PE. Contractile vacuoles were more prominent on the 4th day PE, and they had notable changes on the 7th day PE.

  • PDF

Studies on Dry Matter Yield s, Chmical Composition And Net Energy Accumlation in Three Leading Temperate Grass Species III. Seasonal changes of chemical components under dfferent cutting managements (주요북방형 목초의 건물수량 , 화학성분 및 Net Energy 축적에 관한 연구 III. 예취관리에 화학성분의 계절적 변화)

  • 김정갑;양종성;한흥전
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.3
    • /
    • pp.157-163
    • /
    • 1986
  • Synthesis and accumulation pattern of Weender components in orchardgrass (Dactylis glomerata L.) cv. Potomac and Baraula, perennial ryegrass (Lolium perenne L.) cv. Reveille and Semperweide and meadow fescue (Festuca pratensis Huds.) cv. Cosmos 11 and N.F.G. were studied under different growth environments and cutting managements. The field experiments were conducted as a split plot design with three cutting regimes of 6-7 cuts at grazing stage, 4-5 cuts at silage and 3 cuts at hay stage from 1975 to 1979 in Korea and West Germany. The results obtained are summarized as follows: 1. Air temperature, rainfalls and solar radiation were found to be an important meteorological factors influenced to synthesis and accumulation of Weender components. Under high temperature and strong solar radiation during summer season in Korea, accumulation of crude fiber and cell-wall constituents (NDF) in the plants, as average of all grass species and cutting regimes, were increased to about 30.1% and 48.7% from 27,9% and 42.9% in spring, respectively, while total nonstructural carbohydrates (TNC) were decreased to 1.52% in summer from 4.01% in spring. In West Germany, the concentration of Weeder components showed little seasonal variation. 2. Crude fiber and neutral detergent fiber (NDF) were shown higher concentration in orchardgrass than those of perennial ryegrass and meadow fescue, but N-free extractions and TNC as well as net energy value were less accumulated in orchardgrass. Orchardgrass contained lower net energy contents with 534 StE. 431 StE and 575 StE/kg for Suweon, Cheju and Freising, respectively, as compared with 624 StE (Suweon), 491 StE (Cheju) and 657 StE/kg (Freising) in meadow fescue.

  • PDF

Optimization of Culture Conditions and Encapsulation of Lactobacillus fermentum YL-3 for Probiotics (가금류 생균제 개발을 위한 Lactobacillus fermentum YL-3의 배양조건 최적화 및 캡슐화)

  • Kim, Kyong;Jang, Keum-Il;Kim, Chung-Ho;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.255-262
    • /
    • 2002
  • This experiment was performed to improve the stability of Lactobacillus fermentum YL-3 as a poultry probiotics. The culture conditions that improve acid tolerance of L. fermentum YL-3 were investigated by changing several factors such as medium composition, temperature, anaerobic incubation and culture time. Also, L. fermentum YL-3 was encapsulated with alginate, calcium chloride and chitosan. The stable culture conditions of L. fermentum YL-3 were obtained in anaerobic incubation using MRS media without tween 80 for 20 hour at $42^{\circ}C$. The capsule after treatment with 1% chitosan was formed close membrane by a bridge bond. Immobilization of L. fermentum YL-3 in capsule was observed by confocal laser scanning microscopy, and cell viability was $2.0{\times}10^9\;CFU/g$ above the average. L. fermentum YL-3 capsule after acid treated at pH 2.0 for 3 hour survived about 40%, but those encapsulated with 1% chitosan survived about 65%. Survival rate of capsule stored at room temperature decreased about $2{\sim}3$ log cycle during 3 weeks, but viability of capsule stored at $4^{\circ}C$ during 3 weeks maintained almost $10^8\;CFU/g$ levels.

A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia (암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구)

  • Cho, Gwang Hee;Park, Ji Hye;Rasheed, Haroon Ur;Yoon, Hyung Chul;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.

High Density Tilapia Culture in a Recirculating Water System without Filter Bed (무여과순환수 탱크 이용 Tilapia의 고밀도 사육실험)

  • KIM In-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.59-67
    • /
    • 1983
  • An experiment on the rearing of tilapia stocked in closed recirculating tanks eliminating biological filter beds was carried out at the Fish Culture Experiment Station of the National Fisheries University of Pusan, from May 18 through October 21, 1982, and the growth rates, feed conversion, water quality, spawning prevention and space utilization efficiency were discussed. Finally discussed is the feasibility on the establishment of commercial production units. On the water quality, the water temperature ranged from $22.8^{\circ}C\;to\;29.1^{\circ}C$, and total ammonia arround 10 ppm or slightly up. Maintaining phytoplankton bloom was not successful probably because of the active consumption by the heavily stocked tilapia. Several attempts were made by changing the culture water with green water from a nearby earthen pond with results of fading-away in a couple of days. Feed conversions were relatively high ranging from 0.9 to 1.2 except for experiment 1 when the fish were not fully recovered from weakened wintering state. The feed used was partly laboratory prepared $25\%$ protein diet and mostly commercially available $39\%$ protein carp feed. Spawning was completely controlled during the experiment, resulting from density effect, which ranged from 10kg to 40.7kg per square meter with water depth of 0.5 to 0.6m. Space utilization efficiency was very high. Daily net production from the experiment division 3, which showed the highest result, was 6.206 kg per tank, which is calculated 3,235 metric tons per hectare per year, This time, water temperature ranged from 27.8 to $29.1^{circ}C$, average being $28.4^{circ}C$, and total ammonia arround 10 ppm. An estimation for the commercial set-up of the production system based on the results of experiment divisions which had initial stocking rate $15\;kg/m^2$ or up, is made. If the total facility, 8 tanks comprising $56\;m^2$ in surface area, is used for the present study, the yield would become 5,639 kg from 200 day rearing, which would be possible under double sheets vinyl house without additional heating, and it is thought feasible in the economic view point, when 10 or more units are operated.

  • PDF