• Title/Summary/Keyword: Average maximum relative humidity

Search Result 71, Processing Time 0.03 seconds

Influence of Weather Factors on the Incidence of the Mulberry Aleyrodid, Dialeuropora decempuncta (Quaintance and Baker) and Their Relation to Yield Loss

  • Bandyopadhyay U. K.;Santhakumar M. V.;Sahu P. K.;Saratchandra B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.2
    • /
    • pp.129-133
    • /
    • 2005
  • The seasonal occurrence and influence of abiotic factors viz., maximum and minimum temperature, maximum and minimum humidity and rainfall on population fluctuation of aleyrodid, Dialeuropora decempuncta on a evolved mulberry (Morus alba L.) variety known to be susceptible to aleyrodid infestation was assessed during the period from 1999 - 2001 in twenty-five villages under nine blocks of Malda district of West Bengal. The results indicate that the aleyrodid population is practically very low or absent during January to June and thereafter increases gradually. The increase in population of various stages of aleyrodid is significantly correlated with increase in previous 7 days of average maximum relative humidity.

Ammonia and Carbon Dioxide Concentrations in a Layer House

  • Kilic, Ilker;Yaslioglu, Erkan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1211-1218
    • /
    • 2014
  • Higher concentrations of ammonia ($NH_3$) and carbon dioxide ($CO_2$) in animal barns can negatively affect production and health of animals and workers. This paper focuses on measurements of summer concentrations of ammonia ($NH_3$) and carbon dioxide ($CO_2$) in a naturally ventilated laying henhouse located at an egg production facility in Bursa region, western Turkey. Also, indoor and ambient environmental conditions such as temperature and relative humidity were measured simultaneously with pollutant gas concentrations. The average $NH_3$ concentrations during summer of 2013 was 8.05 ppm for exhaust and 5.42 ppm for inlet while average $CO_2$ concentration was 732 ppm for exhaust and 625 ppm for inlet throughout summer. The overall minimum, average and maximum values and humidity were obtained as $16.8^{\circ}C$, $24.72^{\circ}C$, and $34.71^{\circ}C$ for indoor temperature and 33.64%, 63.71%, and 86.18% for relative humidity. The lowest exhaust concentrations for $NH_3$ and $CO_2$ were 6.98 ppm and 609 ppm, respectively. They were measured in early morning at the maximum diurnal ventilation rate in July 2013 and August 2013. The highest concentrations were 10.58 ppm for $NH_3$ and 904 ppm for $CO_2$ recorded in the afternoon when the ventilation rate was the lowest in June 2013.

Variation of Hydro-Meteorological Variables in Korea

  • Nkomozepi, Temba;Chung, Sang-Ok;Kim, Hyun-Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.135-143
    • /
    • 2014
  • The variability and temporal trends of the annual and seasonal minimum and maximum temperature, rainfall, relative humidity, wind speed, sunshine hours, and runoff were analyzed for 5 major rivers in Korea from 1960 to 2010. A simple regression and non-parametric methods (Mann-Kendall test and Sen's estimator) were used in this study. The analysis results show that the minimum temperature ($T_{min}$) had a higher increasing trend than the maximum temperature ($T_{max}$), and the average temperature increased by about $0.03^{\circ}C\;yr.^{-1}$. The relative humidity and wind speed decreased by $0.02%\;yr^{-1}$ and $0.01m\;s^{-1}yr^{-1}$, respectively. With the exception of the Han River basin, the regression analysis and Mann-Kendall and Sen results failed to detect trends for the runoff and rainfall over the study period. Rapid land use changes were linked to the increase in the runoff in the Han River basin. The sensitivity of the evapotranspiration and ultimately the runoff to the meteorological variables was in the order of relative humidity > sunshine duration > wind speed > $T_{max}$ > $T_{min}$. Future studies should investigate the interaction of the variables analyzed herein, and their relative contributions to the runoff trends.

The Cooling Effect of Fog Cooling System as Affected by Air Exchange Rate in Natural Ventilation Greenhouse (자연환기 온실의 환기회수에 따른 포그냉방시스템의 냉방효과)

  • 김문기;김기성;권혁진
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The cooling effect of a fog cooling system has a close relationship to air flow and relative humidity in the greenhouse. From the VETH chart for cooling design, a cooling efficiency can be improved by means of increasing the air exchange rate and the amount of sprayed water. In the no shading experimental greenhouse by time control, when average air exchange rate was 0.77 times.min$^{-1}$ and spray water amount was 2,009g, inside temperature of the greenhouse was 31$^{\circ}C$ that was almost close to outside temperature and cooling efficiency was 82%. When average air exchange rate was close to temperature of the greenhouse that was no cooling and 70% shading greenhouse environment. When average air exchange rate was 2.59times.min$^{-1}$ , spray water amount was 2,009g and shading rate was 70%, inside relative humidity of the greenhouse was increased was 2,009 g and shading rate was 70%, inside relative humidity of the greenhouse was increased, but temperature was not decreased. When average air exchange rate was 2.33 times.min$^{-1}$ and spray water amount was 2,009g, inside temperature was 31.4 and at that time maximum wind speed at the air inlet of greenhouse was 1.9m.s$^{-1}$ . Since time controller sprayed amount of constant water at a given interval, some of sprayed water remained not to be evaporated, which increased relative humidity and decreased cooling efficiency. Because the shading screen prevented air flow in the greenhouse, it also caused the evaporation efficiency to be decreased. In order to increase cooling efficiency, it was necessary to study on controling by relative humidity and air circulation in the greenhouse.

  • PDF

Environmental Analysis of a Windowless Delivery Swine Building : Temperature and Relative Humidity (무창분만돈사의 온.습도 환경 분석)

  • 이성현;조한근;장유섭
    • Journal of Animal Environmental Science
    • /
    • v.3 no.2
    • /
    • pp.77-85
    • /
    • 1997
  • Recently, local swine producers are rapidly adopting the indoor production system which developed in foreign countries. However, this imported system is reported as not functioning properly because of different climate conditions. The objective of this project was to investigate the environment characteristics of a windowless delivery swine building. The parameters studied were the heating and cooling loads, the daily changes of indoor temperature and relative humidity, the horizontal and the vertical distributions of indoor temperature, and the effect of mist cooling on indoor temperature. From this study, the following are founded : 1. The maximum cooling and heating loads were - 317.0kcal/㎡$.$h and 336.5kal/㎡$.$h in summer and in winter. The large loads seems to be on account of inappropriate operations of ventilating fans. 2. The daily variations of relative humidity in indoor were smaller than those in outside. Those values both in summer and in winter as relative humidities in door was lower than optimum for growing pigs, the additional humidifier might be helpful to increase the relative humidity in indoor. 3. The horizontal distribution of the indoor temperature was found to be uniform in the variation range of 1$^{\circ}C$. 4. The vertical distribution of the indoor temperature was not found to be uniform; the temperature of upper part was higher than that of slot part. 5. Average values of indoor temperature became lower by 3$^{\circ}C$ by mist cooling. But the variation of temperature was found to be larger; The middle part of the room was cooled down, but the corner part of the room was not affected by misting due to uneven nozzle configuration.

Analyzing the Performance of a Temperature and Humidity Measuring System of a Smart Greenhouse for Strawberry Cultivation (딸기재배 스마트 온실용 온습도 계측시스템의 성능평가)

  • Jeong, Young Kyun;Lee, Jong Goo;Ahn, Enu Ki;Seo, Jae Seok;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.117-125
    • /
    • 2019
  • This study compared the temperature and humidity measured by an aspirated radiation shield (ARS), the accuracy of which has been recently verified, and those measured by a system developed by the parent company (Company A) to investigate and improve the performance of the developed system. The results are as follows. Overall, the two-plate system had a lower radiation shielding effect than the one-plate system but showed better performance results when excluding the effect of strawberry vegetation on the systems. The overall maximum temperature ranges measured by company A's system and the ARS were $20.5{\sim}53.3^{\circ}C$ and $17.8{\sim}44.1^{\circ}C$, respectively. Thus, the maximum temperature measured by company A's system was $2.7{\sim}9.2^{\circ}C$ higher, and the maximum daily temperature difference was approximately $12.2^{\circ}C$. The overall average temperature measured by company A's system and the ARS was $12.4{\sim}38.6^{\circ}C$ and $11.8{\sim}32.7^{\circ}C$, respectively. Thus, the overall average temperature measured by company A's system was $0.6{\sim}5.9^{\circ}C$ higher, and the maximum daily temperature difference was approximately $6.7^{\circ}C$. The overall minimum temperature ranges measured by company A's system and the ARS were $4.2{\sim}28.6^{\circ}C$ and $2.9{\sim}26.4^{\circ}C$, respectively. Thus, the minimum temperature measured by company A's system was $1.3{\sim}2.2^{\circ}C$ higher, and the minimum daily temperature difference was approximately $2.9^{\circ}C$. In addition, the overall relative humidity ranges measured by company A's system and the ARS were 52.9~93.3% and 55.3~96.5%, respectively. Thus, company A's system showed a 2.4~3.2% lower relative humidity range than the ARS. However, there was a day when the relative humidity measured by company A's system was 18.0% lower than that measured by the ARS at maximum. In conclusion, there were differences in the relative humidity measured by the two company's devices, as in the temperature, although the differences were insignificant.

PM10 β-ray attenuation samplers (β-ray absorption method) equivalence evaluation and comparatively observed study (PM10 연속자동측정기(β-ray) 등가성평가 및 비교관측 연구)

  • WonSeok Jung;Hee-Jung Ko;Wonick Seo;Jiyoung Jeong;Sang Min Oh;Kyung-On Boo
    • Particle and aerosol research
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • The Asian dust observation network operates β-ray attenuation samplers to measure PM10 concentrations. In addition, equivalence evaluation and accuracy inspection(Precision Tests) are conducted every year for the reliability of data. β-ray attenuation samplers(16 units) were comparatively observed from May to June 2020 and from July to December 2021. During the observation period, the average daily temperature was the lowest at 6.4℃ in December and the highest at 27.3℃ in August. The average daily humidity ranged from 60% to 100%, but the average daily humidity was over 75% from July to September. The minimum value of the PM10 Gravimetric method was 5.0 ㎍/m3, the maximum value was 53.4 ㎍/m3, and the average value was 17.8 ㎍/m3. The equivalence evaluation results of the PM10 Gravimetric method and β-ray attenuation samplers satisfied the criteria (slope: 1±0.1, intercept: 0±0.5). A relative error analysis between the PM10 Gravimetric method and β-ray attenuation samplers equipment showed that the relative error increased when the concentration was low and the temperature and humidity were high. In addition, in the β-ray attenuation samplers 5-minute interval observation data in May 2020, a relatively large Standard devication was shown as an average maximum ±23.4 ㎍/m3 and a minimum ±15.2 ㎍/m3. At standard deviations of 10% and 90%, equipment with high variability (deviation) was measured at 6 ㎍/m3and 61 ㎍/m3, and equipment with low variability was measured at 12 ㎍/m3 and 47 ㎍/m3. It was confirmed that concentration differences occurred due to differences in variability for each equipment.

Comparison of the Meteorological Factors on the Forestland and Weather Station in the Middle Area of Korea

  • Chae, Hee Mun;Yun, Young Jo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.249-252
    • /
    • 2018
  • Climate is one of most important environmental factors on the forest ecosystem. This study was conducted to analyze the characteristics of meteorological factors in the forest area and weather stations from July 2015 to June 2016 in Cheuncheon and Hongcheon of Kangwon Province in Korea. The HOBO data logger was installed for meteorological analysis in forests area (site 1 and site 2). The meteorological data from the HOBO data logger compared with meteorological data of the weather station. The meteorological data used for the analysis was monthly mean temperature ($^{\circ}C$), monthly mean minimum temperature ($^{\circ}C$), monthly mean maximum average temperature ($^{\circ}C$), and monthly mean relative humidity (%). As a result of this study, the mean temperature ($^{\circ}C$) of forest area was relatively lower than weather station which is the outside the forest area, and the mean maximum temperature ($^{\circ}C$) of weather station was relatively higher than that of forest area. The mean relative humidity (%) was higher in forest area than weather station.

Analysis of Environment Factors in Pleurotus eryngii Cultivation House (새송이버섯 재배사의 환경요인 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.200-206
    • /
    • 2003
  • Pleurotus eryngii(King oyster) is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the year round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation house(A,B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. this experiment was conducted for about two-month from Nov. 11, 2002 to Dec. 30, 2002 in Eryngii. cultivation house-A, B. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Maximum air temperature difference between the upper and lower growth stage during a heating time zone was about 2~3$^{\circ}C$. The max. and min. relative humidity were ranged approximately 60~100%, and average relative humidity was ranged approximately 80~100%. And $CO_2$concentration increased until maximum 1,600~1,800 ppm with the passing growing period. The illuminance in cultivation house was widely distributed from 20lx to 160 lx in accordance with position, and it was maintained lower than the recommended illuminance range 100~200 lx. The average yield per bottle was about 67~85g. But the optimal productivity will be evaluated by considering the quality and quantity of mushroom production, energy requirements, facility construction and management cost, etc.

Analysis of Environment Factors in eryngii Cultivation House (새송이 버섯 재배사의 환경요인 계측)

  • Park, Sung-Wh;Yoon, Yong-Cheol;Suh, Won-Myung;Lee, Keun-Hoo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.347-350
    • /
    • 2003
  • Pleurotus eryngii is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. At the commercial mushroom cultivation houses, this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. This experiment was conducted from Jan. 26, 2003 to Aug. 2, 2003. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Maximum temperature difference between the upper and lower growth stage during a heating time zone was about $6^{\circ}C$. The max. and min. relative humidity were ranged approximately $42{\sim}100%$. The $CO_2$ concentration and the illuminance were lowly maintained during growing period. The average yield per bottle was about $54{\sim}102g$.

  • PDF