• Title/Summary/Keyword: Average latency

Search Result 187, Processing Time 0.031 seconds

Garbage Collection Technique for Balanced Wear-out and Durability Enhancement with Solid State Drive on Storage Systems

  • Kim, Sungho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.25-32
    • /
    • 2017
  • Recently, the use of NAND flash memory is being increased as a secondary device to displace conventional magnetic disk. NAND flash memory, as one among non-volatile memories, has many advantages such as low power, high reliability, low access latency, and so on. However, NAND flash memory has disadvantages such as erase-before-write, unbalanced operation speed, and limited P/E cycles, unlike conventional magnetic disk. To solve these problems, NAND flash memory mainly adopted FTL (Flash Translation Layer). In particular, garbage collection technique in FTL tried to improve the system lifetime. However, previous garbage collection techniques have a sensitive property of the system lifetime according to write pattern. To solve this problem, we propose BSGC (Balanced Selection-based Garbage Collection) technique. BSGC efficiently selects a victim block using all intervals from the past information to the current information. In this work, SFL (Search First linked List), as the proposed block allocation policy, prolongs the system lifetime additionally. In our experiments, SFL and BSGC prolonged the system lifetime about 12.85% on average and reduced page migrations about 22.12% on average. Moreover, SFL and BSGC reduced the average response time of 16.88% on average.

A Throughput Computation Method for Throughput Driven Floorplan (처리량 기반 평면계획을 위한 처리량 계산 방법)

  • Kang, Min-Sung;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.18-24
    • /
    • 2007
  • As VLSI technology scales to nano-meter order, relatively increasing global wire-delay has added complexity to system design. Global wire-delay could be reduced by inserting pipeline-elements onto wire but it should be coupled with LIP(Latency Intensive Protocol) to have correct system timing. This combination however, drops the throughput although it ensures system functionality. In this paper, we propose a computation method useful for minimizing throughput deterioration when pipeline-elements are inserted to reduce global wire-delay. We apply this method while placing blocks in the floorplanning stage. When the necessary for this computation is reflected on the floorplanning cost function, the throughput increases by 16.97% on the average when compared with the floorplanning that uses the conventional heuristic throughput-evaluation-method.

Performance Analysis of Deadlock-free Multicast Algorithms in Torus Networks (토러스 네트워크에서 무교착 멀티캐스트 알고리즘의 성능분석)

  • Won, Bok-Hee;Choi, Sang-Bang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.287-299
    • /
    • 2000
  • In this paper, we classify multicast methods into three categories, i.e., tree-based, path-based, and hybrid-based multicasts, for a multicomputer employing the bidirectional torus network and wormhole routing. We propose the dynamic partition multicast routing (DPMR) as a path-based algorithm. As a hybrid-based algorithm, we suggest the hybrid multicast routing (HMR), which employs the tree-based approach in the first phase of routing and the path-based approach in the second phase. Performance is measured in terms of the average latency for various message length to compare three multicast routing algorithms. We also compare the performance of wormhole routing having variable buffer size with virtual cut-through switching. The message latency for each switching method is compared using the DPMR algorithm to evaluate the buffer size trade-off on the performance.

  • PDF

Genetic Algorithm-based Hardware Resource Mapping Technique for the latency optimization in Wireless Network-on-Chip (무선 네트워크-온-칩에서 지연시간 최적화를 위한 유전알고리즘 기반 하드웨어 자원의 매핑 기법)

  • Lee, Young Sik;Lee, Jae Sung;Han, Tae Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.174-177
    • /
    • 2016
  • Wireless network-on-chip (WNoC) can alleviate critical path problem of existing typical NoCs by integrating radio-frequency module on router. In this paper, core-connection-aware genetic algorithm-based core and WIR mapping methodology at small world WNoC is presented. The methodology could optimize the critical path between cores with heavy communication. The 33% of average latency improvement is achieved compared to random mapping methodology.

  • PDF

A Proposal and Evaluation of a Novel Binding Scheme in the NEMO Support in PMIPv6 Networks (PMIPv6 망에서 NEMO 지원을 위한 Binding 방안 제안과 검증)

  • Na, Yoo-Cheol;Min, Sang-Won;Kim, Bok-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1266-1271
    • /
    • 2010
  • In this paper, we describe overhead problems which result from the supporting NEMO in PMIPv6 networks, and propose a novel binding scheme for the network-based mobility management with new network-layer message which solves the problems of the additional tunnel. Our proposed binding scheme can reduce handover latency without mobility-related procedure by the hosts. A performance evaluation shows that the proposed scheme works more efficiently than the scheme which is proposed by the IETF NETLMM WG in terms of packet loss, handover latency and average packet throughput.

Mapping and Scheduling for Circuit-Switched Network-on-Chip Architecture

  • Wu, Chia-Ming;Chi, Hsin-Chou;Chang, Ruay-Shiung
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.111-120
    • /
    • 2009
  • Network-on-chip (NoC) architecture provides a highper-formance communication infrastructure for system-on-chip designs. Circuit-switched networks guarantee transmission latency and throughput; hence, they are suitable for NoC architecture with real-time traffic. In this paper, we propose an efficient integrated scheme which automatically maps application tasks onto NoC tiles, establishes communication circuits, and allocates a proper bandwidth for each circuit. Simulation results show that the average waiting times of packets in a switch in $6{\times}6$6, $8{\times}8$, and $10{\times}10$ mesh NoC networks are 0.59, 0.62, and 0.61, respectively. The latency of circuits is significantly decreased. Furthermore, the buffer of a switch in NoC only needs to accommodate the data of one time slot. The cost of the switch in the circuit-switched network can be reduced using our scheme. Our design provides an effective solution for a critical step in NoC design.

  • PDF

A Coordinator-based RFID Protocol to Avoid Reader Collision (코디네이터 기반 RFID 리더 충돌 회피 프로토콜)

  • Yang, Hoon-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.321-328
    • /
    • 2010
  • This paper presents a coordinator-based TDMA reader protocol that can avoid the reader collision in a passive RFID system. In the proposed protocol, the coordinator can not only minimize the number of empty slots by efficiently allocating slots to readers incoming in Poisson distribution, but reduce latency time through the limited frame size. The proposed protocol can be implemented in either mobile or fixed mode through the slot structure to be described in the context. The simulation results show it works as suggested and the frame size limitation as well as the statistical distribution of incoming readers has a great impact on the overall slots and the average latency time.

A Context-aware Task Offloading Scheme in Collaborative Vehicular Edge Computing Systems

  • Jin, Zilong;Zhang, Chengbo;Zhao, Guanzhe;Jin, Yuanfeng;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.383-403
    • /
    • 2021
  • With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.

Reliability Optimization Technique for High-Density 3D NAND Flash Memory Using Asymmetric BER Distribution (에러 분포의 비대칭성을 활용한 대용량 3D NAND 플래시 메모리의 신뢰성 최적화 기법)

  • Myungsuk Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • Recent advances in flash technologies, such as 3D processing and multileveling schemes, have successfully increased the flash capacity. Unfortunately, these technology advances significantly degrade flash's reliability due to a smaller cell geometry and a finer-grained cell state control. In this paper, we propose an asymmetric BER-aware reliability optimization technique (aBARO), new flash optimization that improves the flash reliability. To this end, we first reveal that bit errors of 3D NAND flash memory are highly skewed among flash cell states. The proposed aBARO exploits the unique per-state error model in flash cell states by selecting the most error-prone flash states and by forming narrow threshold voltage distributions (for the selected states only). Furthermore, aBARO is applied only when the program time (tPROG) gets shorter when a flash cell becomes aging, thereby keeping the program latency of storage systems unchanged. Our experimental results with real 3D MLC and TLC flash devices show that aBARO can effectively improve flash reliability by mitigating a significant number of bit errors. In addition, aBARO can also reduce the read latency by 40%, on average, by suppressing the read retries.

A Hybrid Blockchain-Based Approach for Secure and Efficient IoT Identity Management

  • Abdulaleem Ali Almazroi;Nouf Atiahallah Alghanmi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.11-25
    • /
    • 2024
  • The proliferation of IoT devices has presented an unprecedented challenge in managing device identities securely and efficiently. In this paper, we introduce an innovative Hybrid Blockchain-Based Approach for IoT Identity Management that prioritizes both security and efficiency. Our hybrid solution, strategically combines the advantages of direct and indirect connections, yielding exceptional performance. This approach delivers reduced latency, optimized network utilization, and energy efficiency by leveraging local cluster interactions for routine tasks while resorting to indirect blockchain connections for critical processes. This paper presents a comprehensive solution to the complex challenges associated with IoT identity management. Our Hybrid Blockchain-Based Approach sets a new benchmark for secure and efficient identity management within IoT ecosystems, arising from the synergy between direct and indirect connections. This serves as a foundational framework for future endeavors, including optimization strategies, scalability enhancements, and the integration of advanced encryption methodologies. In conclusion, this paper underscores the importance of tailored strategies in shaping the future of IoT identity management through innovative blockchain integration.